Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real problem is their harmful metabolites-toxins that, due to their thermostable properties, can easily be transferred to malting and brewing by-products. Besides fungal metabolites, other toxins originating from plants can be harmful to animal health. Precise and accurate analytical techniques broadened the spectrum of known toxins originating from microorganisms and plants that can pose a threat to animal health. Multi-(myco)toxin analyses are advanced and useful tools for the assessment of product safety, and legislation should follow up and make some important changes to regulate yet unregulated, but highly occurring, microbial and plant toxins in malting and brewing by-products used for animal feed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356641PMC
http://dx.doi.org/10.3390/toxins11010030DOI Listing

Publication Analysis

Top Keywords

malting brewing
16
brewing by-products
12
by-products animal
8
toxins originating
8
animal health
8
multi-mycotoxins malting
4
brewing
4
by-products
4
by-products fungi
4
fungi yeasts
4

Similar Publications

Relationship Between Physical Characteristics of Cereal Polysaccharides and Soft Tribology-The Importance of Grain Source and Malting Modification.

Food Sci Nutr

January 2025

Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology Freising Germany.

Starch and non-starch polysaccharides ((N)SPs) are relevant in cereal-based beverages. Although their molar mass and conformation are important to the sensory characteristics of beer and non-alcoholic beer, their triggering mechanism in the mouth is not fully understood. Soft tribology has emerged as a tool to mimic oral processing (drinking).

View Article and Find Full Text PDF

Mycotoxins are secondary metabolites of fungi and represent a serious problem for human health. Due to growing interest, various aspects have been widely studied by scientific groups. One of these aspects relates to the food industry and associated beer production.

View Article and Find Full Text PDF

Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics.

Folia Microbiol (Praha)

December 2024

Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic.

Lipids from microorganisms, and especially lipids from Archaea, are used as taxonomic markers. Unfortunately, knowledge is very limited due to the uncultivability of most Archaea, which greatly reduces the importance of the diversity of lipids and their ecological role. One possible solution is to use lipidomic analysis.

View Article and Find Full Text PDF

The silymarin complex extracted from milk thistle provides significant health benefits, particularly due to its antioxidant and hepatoprotective properties. However, plant substances can be contaminated by a number of fungi types and their secondary metabolites-mycotoxins. This work deals with the determination of aflatoxins and zearalenone and its metabolites in 39 different samples grown in 2020 and 2021.

View Article and Find Full Text PDF

First report of Triticale leaf rust caused by in Canada.

Plant Dis

December 2024

University of Alberta, Faculty of Agricultural, Life and Environmental Sciences, Edmonton, Alberta, Canada.

Triticale (× Triticosecale), was initially produced by crossing wheat (Triticum) with rye (Secale). Although still a minor crop in Canada, triticale grain is used both as human food (in bread, pastry products, and the brewing industry) and as livestock feed (Larter 2015). In September 2023 typical leaf rust samples were observed and collected in winter Triticale at Lacombe, Alberta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!