Objective: The aim of this study was to introduce a novel methodology for classification of brain hemodynamic responses collected via functional near infrared spectroscopy (fNIRS) during rest, motor imagery (MI) and motor execution (ME) tasks which involves generating population-level training sets.
Approach: A 48-channel fNIRS system was utilized to obtain hemodynamic signals from the frontal (FC), primary motor (PMC) and somatosensory cortex (SMC) of ten subjects during an experimental paradigm consisting of MI and ME of various right hand movements. Classification accuracies of random forest (RF), support vector machines (SVM), and artificial neural networks (ANN) were computed at the single subject level by training each classifier with subject specific features, and at the group level by training with features from all subjects for ME versus Rest, MI versus Rest and MI versus ME conditions. The performances were also computed for channel data restricted to FC, PMC and SMC regions separately to determine optimal probe location.
Main Results: RF, SVM and ANN had comparably high classification accuracies for ME versus Rest (%94, %96 and %98 respectively) and for MI versus Rest (%95, %95 and %98 respectively) when fed with group level feature sets. The accuracy performance of each algorithm in localized brain regions were comparable (>%93) to the accuracy performance obtained with whole brain channels (>%94) for both ME versus Rest and MI versus Rest conditions.
Significance: By demonstrating the feasibility of generating a population level training set with a high classification performance for three different classification algorithms, the findings pave the path for removing the necessity to acquire subject specific training data and hold promise for a novel, real-time fNIRS based BCI system design which will be most effective for application to disease populations for whom obtaining data to train a classification algorithm is not possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/aafdca | DOI Listing |
J Neuroeng Rehabil
December 2024
Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.
View Article and Find Full Text PDFExp Physiol
December 2024
School of Health Sciences, Massey University, Wellington, New Zealand.
Dynamic resistance exercise (RE) produces sinusoidal fluctuations in blood pressure, with hypotension and cerebral hypoperfusion commonly observed immediately following RE. Whether the cerebral vasculature adapts to these regular blood pressure challenges is unclear. This study examined the cerebrovascular response to post-dynamic RE orthostasis.
View Article and Find Full Text PDFHum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
Fr J Urol
December 2024
Centres médicaux-chirurgicaux Ambroise Paré, Hartmann, Pierre Cherest, 26 Bd Victor Hugo, 92200 Neuilly-sur-Seine, France.
Introduction: Numerous anatomical theories have been developed to explain women stress urinary incontinence (SUI) and improve its management. The transperineal ultrasound is an efficient and non-invasive exam that perfectly studies the bladder neck movement and the urethral anatomy. The measurement of the static portion of the distal urethral length, considered as the functional urethral length (FUL), and of the posterior urethral closure angle (PUCA) have not been studied before and could be of interest.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
At rest, the menstrual cycle phase impacts ventilation and chemosensitivity. However, during exercise there is inconclusive evidence that the menstrual cycle phase affects ventilation or chemosensitivity. We sought to examine the influence of menstrual phase and hormonal birth control (BC) on chemosensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!