Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite.

J Environ Manage

Facultad de Ingeniería, Benemérita Universidad Autónoma de Puebla, Edificio ING1, Ciudad Universitaria, C.P. 72570, Puebla, Mexico. Electronic address:

Published: March 2019

Activated carbon is one of the most studied materials for the adsorption of textile dyes. The adsorptive properties of this material are a result of its high specific surface area and some of the functional groups acquired during the chemical activation. This work reports the preparation of a composite material using CarZN400 activated carbon and polyelectrolyte poly(VPA-co-TEGDMA). The adsorptive properties of the material obtained are a result of the combination of the high specific surface area of the carbon and the ionic exchange capability of the polyelectrolyte. The covering of the surface of activated carbon with poly(VPA-co-TEGDMA) allowed to obtain a composite material (CarZN400C) with greater adsorption capacity for cationic dyes compared to the carbon. The adsorption isotherms of the dyes fit Langmuir's model, and the adsorptive capacities for cationic dyes for CarZN400C ranged between 222 and 416 mg/g. The kinetic study showed that the adsorption of basic and acid dyes fit the pseudo-second order kinetic model. CarZN400C also exhibited the ability to adsorb textile dyes present in wastewater. It was observed that, when making a previous treatment of the wastewater using coagulation-flocculation followed by adsorption using CarZN400C, it was possible to obtain removal percentages of color close to 100%. The wastewaters treated by coagulation-flocculation and adsorption improved their quality by decreasing the value for COD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.01.012DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
textile dyes
12
adsorption textile
8
adsorptive properties
8
properties material
8
material result
8
high specific
8
specific surface
8
surface area
8
composite material
8

Similar Publications

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Cdc42 is crucial for the early regulation of hepatic stellate cell activation.

Am J Physiol Cell Physiol

January 2025

Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.

The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation.

View Article and Find Full Text PDF

Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO from Flue Gas.

Inorg Chem

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).

View Article and Find Full Text PDF

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!