We previously investigated excessive fluoride exposure elicited intracellular endoplasmic reticulum (ER) stress and led to Sertoli cells dysfunction in vitro. However, the mechanisms underlying fluoride-mediated male reproductive damage in vivo remain largely unknown. Considerable evidence has now revealed ER stress is closely linked with testicular oxidative damage. Hence, we aimed to explore whether ER stress signaling was involved in the testicular protective effects of antioxidant N-acetylcysteine (NAC) against testicular apoptosis induced by fluoride. Male SD rats were oral gavaged with sodium fluoride (NaF) for 7 weeks to induce fluorosis. The animals were pretreatment with or without NAC (150 mg/Bw•d). Our results demonstrated that sub-chronic NaF exposure triggered testicular apoptosis and sex hormonal disturbance in pituitary-testicular (PT) axis, promoted oxidative stress and the expression of ER stress mediators. Antioxidant NAC, however, prevented NaF-induced testicular apoptosis accompanied by activating Nrf2-mediated antioxidant potential. Simultaneously, NAC pretreatment downregulated XBP1 splicing, reduced JNK phosphorylation and further blocked cleavage of caspase-3, all these might contribute to the inhibition of testicular cell apoptosis. Collectively, the present results suggested that prolonged administration of NAC preserved testicular function and normalized sex hormonal disruption induced by NaF via the inhibition of Nrf2-associated oxidative damage and Ire1α-JNK-mediated apoptosis in rat testis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.reprotox.2019.01.001 | DOI Listing |
Reproduction
January 2025
W Li, Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
DIZE improved obesity and metabolic disturbances in DIO mice. An increase of sperm account and motility, along with improved morphology and increased male fertility was observed after DIZE treatment. Both serum and intratesticular testosterone levels showed an increase.
View Article and Find Full Text PDFWorld J Mens Health
January 2025
TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Environmental endocrine disruptors, as exogenous chemicals that interfere with hormonal behavior, are known to cause testicular Leydig cell death and senescence. The incidence of diseases of the male reproductive system has been increasing over the past half-century. Genetic defects alone cannot explain the rapid increase in incidence, and there is growing evidence that environmental factors or lifestyle changes are responsible for the high incidence in recent years.
View Article and Find Full Text PDFFront Pediatr
January 2025
Pathology Department, Anhui Provincial Children's Hospital, Hefei, Anhui, China.
Introduction: Cryptorchidism can damage cells in the cryptorchid testes due to elevated local temperatures, potentially impacting the fertility of the child in adulthood. Research indicates that vitamin D enhances sperm quality in adult males. This study aimed to explore whether vitamin D inhibits NLRP3 activation, thus helping to mitigate heat stress damage to testicular spermatogenic and Sertoli cells.
View Article and Find Full Text PDFJBRA Assist Reprod
January 2025
Department of Anatomical Sciences, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran.
Objective: Many cancer survivors may experience irreversible infertility due to chemotherapy treatment for childhood cancer. In this study, spermatogenesis development was evaluated following the grafting of fresh and frozen-thawed testicular tissue from neonatal mice to the epididymal fat of adult mice.
Methods: After bilateral castration of recipient mice, fresh or frozen-thawed neonatal testis tissues were grafted into the epididymal fat of the mice.
Am J Reprod Immunol
January 2025
Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil.
Problem: A high-fat diet (HFD) predisposes animals to glucose intolerance, dyslipidemia and testicular oxidative stress, and impairs sperm production in rats. Quercetin is a flavonoid with antioxidant, anti-inflammatory, and lipolytic actions and is a potential supplement to combat the oxidative stress caused by HFD and its harmful effects on reproduction. This study evaluated the effects of quercetin supplementation at doses of 10 and 20 mg/day on reproductive parameters and testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!