The mere presence of task-irrelevant auditory stimuli is known to interfere with cognitive functioning. Disruption can be caused by changing auditory distractors (the changing-state effect) or by a sound that deviates from the auditory background (the deviation effect). The unitary account of auditory distraction explains both phenomena in terms of attentional capture whereas the duplex-mechanism account posits that they reflect two fundamentally different forms of distraction in which only the deviation effect is caused by attentional capture. To test these predictions, we exploited a physiological index of attention orienting: the pupillary dilation response (PDR). Participants performed visual serial recall while ignoring sequences of spoken letters. These sequences either comprised repeated or changing letters, and one letter could sometimes be replaced by pink noise (the deviant). Recall was poorer in both changing-state and deviant trials. Interestingly, the PDR was elicited by deviant sounds but not changing-state sounds, while a tonic increase in pupil size was found throughout changing-state trials. This physiological dissociation of the changing-state and the deviation effects suggests they are subtended by distinct mechanisms thereby procuring support for the duplex-mechanism account over the unitary account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopsycho.2019.01.002 | DOI Listing |
J Neuroeng Rehabil
January 2025
Dept. of Cognitive Robotics, TU Delft, Delft, Netherlands.
Background: Head-mounted displays can be used to offer personalized immersive virtual reality (IVR) training for patients who have suffered an Acquired Brain Injury (ABI) by tailoring the complexity of visual and auditory stimuli to the patient's cognitive capabilities. However, it is still an open question how these virtual environments should be designed.
Methods: We used a human-centered design approach to help define the characteristics of suitable virtual training environments for ABI patients.
J Exp Psychol Learn Mem Cogn
December 2024
Technical University of Darmstadt, Institute of Psychology.
The goal of the present investigation was to perform a registered replication of Jones and Macken's (1995b) study, which showed that the segregation of a sequence of sounds to distinct locations reduced the disruptive effect on serial recall. Thereby, it postulated an intriguing connection between auditory stream segregation and the cognitive mechanisms underlying the irrelevant speech effect. Specifically, it was found that a sequence of changing utterances was less disruptive in stereophonic presentation, allowing each auditory object (letters) to be allocated to a unique location (right ear, left ear, center), compared to when the same sounds were played monophonically.
View Article and Find Full Text PDFElife
January 2025
Department of Psychology, Queens University, Kingston, Canada.
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.
View Article and Find Full Text PDFJ Neurosci
January 2025
Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.
Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.
View Article and Find Full Text PDFCureus
December 2024
General Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, IND.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!