Purpose: To evaluate extracellular matrix regulators and inflammatory factors in a patient who developed ectasia after small incision lenticule extraction (SMILE) despite normal preoperative tomographic and biomechanical evaluation.

Methods: The SMILE lenticules from both eyes of the patient with ectasia and three control patients (5 eyes) matched for age, sex, and duration of follow-up were used for gene expression analysis of lysyl oxidase (LOX), matrix metalloproteinase 9 (MMP9), collagen types I alpha 1 (COLIA1) and IV alpha 1 chain (COLIVA1), transforming growth factor-beta (TGF-beta), bone morphogenetic protein 7 (BMP7), interleukin-6 (IL-6), cathepsin K, cluster of differentiation 68, integrin beta-1, and tissue inhibitor of metalloproteinase-1 (TIMP1). Furthermore, the functional role of LOX was assessed in vitro by studying the collagen gel contraction efficiency of LOX overexpressing in primary human corneal fibroblast cells.

Results: Preoperatively, manifest refraction was -9.25 diopters (D) in the right eye and -10.00 D in the left eye. Corneal thickness, Pentacam (OCULUS Optikgeräte GmbH, Wetzlar, Germany) tomography, and Corvis biomechanical indices (OCULUS Optikgeräte GmbH) were normal. The ectatic eye lenticule (left) had reduced expression of LOX and COLIA1 compared to controls without ectasia. Increased mRNA fold change expression of TGF-beta, BMP7, IL-6, cathepsin K, and integrin beta-1 was noted in the ectatic left eye compared to controls; however, MMP9 and TIMP1 levels were not altered. Ectopic LOX expression in human corneal fibroblast induced significantly more collagen gel contraction, confirming the role of LOX in strengthening the corneal stroma.

Conclusions: Reduced preexisting LOX and collagen levels may predispose clinically healthy eyes undergoing refractive surgery to ectasia, presumably by corneal stromal weakening via inadequately cross-linked collagen. Preoperative molecular testing may reveal ectasia susceptibility in the absence of tomographic or biomechanical risk factors. [J Refract Surg. 2019;35(1):6-14.].

Download full-text PDF

Source
http://dx.doi.org/10.3928/1081597X-20181128-01DOI Listing

Publication Analysis

Top Keywords

tomographic biomechanical
8
il-6 cathepsin
8
integrin beta-1
8
role lox
8
collagen gel
8
gel contraction
8
human corneal
8
corneal fibroblast
8
left eye
8
oculus optikgeräte
8

Similar Publications

Purpose: The distinction between pellucid-like keratoconus (PLK) and pellucid marginal corneal degeneration (PMD) based on tomographic examinations is difficult. In this study, corneal tomographic and biomechanical parameters, after classifying PMD and PLK using swept-source optical coherence tomography, were analyzed.

Methods: Diagnoses of PLK and PMD were made using SS-OCT imaging, two groups were formed: PLK (n = 30) and PMD (n = 10).

View Article and Find Full Text PDF

Background And Objective: Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.

Methods: In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy.

View Article and Find Full Text PDF

Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the viscoelastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or fluid turnover including altered blood perfusion - all hallmarks of inflammation from early events to cancer development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which are based on the stimulation and encoding of shear waves and their conversion into parameter maps of mechanical properties by inverse problem solutions of the wave equation.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to measure biomechanical strains in the lamina cribrosa of human eyes during increases in intraocular pressure (IOP) using optical coherence tomography (OCT) imaging.
  • After applying swim goggles to raise IOP, significant strains were observed in glaucoma patients, with increases linked to worse visual function and complications.
  • The findings suggest that biomechanical responses in the optic nerve head could serve as a noninvasive biomarker for assessing glaucoma damage.
View Article and Find Full Text PDF

Purpose: The study aimed to determine the stability of topographic and tomographic indices measured with Pentacam and to evaluate the biomechanical parameters measured with Corvis ST in the diagnosis of subclinical keratoconus (sKCN) and clinical keratoconus (KCN).

Methods: This is a single-center cohort study with a retrospective review of topographic and tomographic indices and biomechanical parameters on adult patients with subclinical keratoconus (sKCN), clinical keratoconus (KCN), and healthy subjects (control group). The area under the receiver operating curve (AUC) was used to identify the cutoff values for evaluated indices able to distinguish between subjects with sKCN and those with KCN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!