The maternal rearing environment can affect offspring fitness or phenotype indirectly via 'maternal effects' and can also influence a mother's behaviour and fecundity directly. However, it remains uncertain how the effects of the maternal rearing environment cascade through multiple trophic levels, such as in plant-insect herbivore-natural enemy interactions. Pea aphids (Acyrthosiphon pisum) show differential fitness on host legume species, while generalist aphid parasitoids can show variable fitness on different host aphid species, suggesting that maternal effects could operate in a plant-aphid-parasitoid system. We tested whether the maternal rearing environment affected the behaviour and fitness of aphids by rearing aphids on two plant hosts that were either the same as or different from those experienced by the mothers. A similar approach was used to test the behaviour and fitness of parasitoid wasps in response to maternal rearing environment. Here, the host environment was manipulated at the plant or plant and aphid trophic levels for parasitoid wasps. We also quantified the quality of host plants for aphids and host aphids for parasitoid wasps. In choice tests, aphids and parasitoid wasps had no preference for the plant nor plant and aphid host environment on which they were reared. Aphid offspring experienced 50.8% higher intrinsic rates of population growth, 43.4% heavier offspring and lived 14.9% longer when feeding on bean plants compared to aphids feeding on pea plants, with little effect of the maternal rearing environment. Plant tissue nitrogen concentration varied by 21.3% in response to aphid mothers' rearing environment, and these differences correlated with offspring fitness. Maternal effects in parasitoid wasps were only observed when both the plant and aphid host environment was changed: wasp offspring were heaviest by 10.9-73.5% when both they and their mothers developed in bean-reared pea aphids. Also, parasitoid wasp fecundity was highest by 38.4% when offspring were oviposited in the maternal rearing environment. These findings indicate that maternal effects have a relatively small contribution towards the outcome of plant-aphid-parasitoid interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329576PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209965PLOS

Publication Analysis

Top Keywords

rearing environment
32
maternal rearing
28
parasitoid wasps
20
behaviour fitness
12
maternal effects
12
host environment
12
plant aphid
12
aphids parasitoid
12
environment
11
maternal
10

Similar Publications

Seroprevalence and Risk Factors of Anaplasma marginale in Water Buffaloes in Nile Delta of Egypt.

Acta Parasitol

January 2025

Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.

Purpose: Bovine anaplasmosis is a major tick-borne disease in ruminants, resulting in significant economic loss for the dairy sector. This study aimed to evaluate the seroprevalence of Anaplasma marginale (A. marginale) in buffaloes in three governorates in Nile Delta of Egypt.

View Article and Find Full Text PDF

Offspring of adult Yellowstone cutthroat trout (YCT) exposed to a range of selenium (Se) concentrations in situ were reared in a laboratory setting to assess effects on survival, growth and abnormalities. Maternal whole body Se concentrations ranged from 2.6 to 25.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!