Trimethylamine-N-oxide (TMAO), a microbial choline metabolism byproduct that is processed in the liver and excreted into circulation, is associated with increased atherosclerotic lesion formation and cardiovascular disease risk. Genetic regulators of TMAO levels are largely unknown. In the present study, we used 288 mice from a genetically heterogeneous mouse population [Diversity Outbred (DO)] to determine hepatic microRNA associations with TMAO in the context of an atherogenic diet. We also validated findings in two additional animal models of atherosclerosis: liver-specific insulin receptor knockout mice fed a chow diet (LIRKO) and African green monkeys fed high-fat/high-cholesterol diet. Small RNA-sequencing analysis in DO mice, LIRKO mice, and African green monkeys identified only one hepatic microRNA (miR-146a-5p) that is aberrantly expressed across all three models. Moreover, miR-146a-5p levels are associated with circulating TMAO after atherogenic diet in each of these models. We also performed high-resolution genetic mapping and identified a novel quantitative trait locus on Chromosome 12 for TMAO levels. This interval includes two genes, Numb and Dlst, which are inversely correlated with both miR-146a and TMAO and are predicted targets of miR-146a. Both of these genes have been validated as direct targets of miR-146a, though in other cellular contexts. This is the first report to our knowledge of a link between miR-146 and TMAO. Our findings suggest that miR-146-5p, as well as one or more genes at the Chromosome 12 QTL (possibly Numb or Dlst), is strongly linked to TMAO levels and likely involved in the control of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397334 | PMC |
http://dx.doi.org/10.1152/physiolgenomics.00079.2018 | DOI Listing |
BMC Cardiovasc Disord
December 2024
Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
Background: Numerous studies have demonstrated the significance of trimethylamine-N-oxide (TMAO) in the progression of atrial fibrillation (AF). However, the association between TMAO and AF recurrence (RAF) post-catheter ablation is not yet fully understood. This study aims to elucidate the predictive capability of pre-procedural TMAO levels in determining RAF following catheter ablation (CA).
View Article and Find Full Text PDFToxins (Basel)
December 2024
Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan.
Trimethylamine -oxide (TMAO), a gut microbiome-derived metabolite, participates in the atherogenesis and vascular stiffening that is closely linked with cardiovascular (CV) complications and related deaths in individuals with kidney failure undergoing peritoneal dialysis (PD) therapy. In these patients, arterial stiffness (AS) is also an indicator of adverse CV outcomes. This study assessed the correlation between serum TMAO concentration quantified with high-performance liquid chromatography and mass spectrometry and central AS measured by carotid-femoral pulse wave velocity (cfPWV) in patients with chronic PD.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Gastroenterology and Hepatology, The Third People's Hospital of Zhenjiang, Zhenjiang, Jiangsu, China.
Background: Trimethylamine N-oxide (TMAO) has been widely explored and considered as a biomarker for adverse cardiovascular events. However, the relationships between TMAO adverse cardiovascular events are inconsistent in patients. Therefore, this meta-analysis aimed to estimate association between TMAO levels and the prognosis of patients with myocardial infarction (MI).
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2024
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Chronic cerebral hypoperfusion (CCH) is a crucial mechanism causing vascular cognitive impairment (VCI). Choline is metabolized by gut microbiota into trimethylamine N-oxide (TMAO), a risk factor of cardiovascular diseases and cognitive impairment. However, the impact of choline-TMAO pathway on CCH-induced VCI is elusive.
View Article and Find Full Text PDFClin Nutr
December 2024
Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan. Electronic address:
Background: Trimethylamine N-oxide (TMAO) is a gut microbial metabolite derived from dietary l-carnitine and choline. High plasma TMAO levels are associated with cardiovascular disease and overall mortality, but little is known about the associations of TMAO and related metabolites with the risk of kidney function decline among patients with chronic kidney disease (CKD).
Methods: We prospectively followed 152 nondialysis patients with CKD stages 3-5 and measured plasma TMAO and related metabolites (trimethylamine [TMA], choline, carnitine, and γ-butyrobetaine) via liquid chromatography‒mass spectrometry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!