Objectives: We aimed to analyze factors affecting the severity of mild whiplash-associated disorders (WADs) and to develop a predictive model to evaluate the presence of mild WAD in minor motor vehicle crashes (MVCs).
Methods: We used the Korean In-Depth Accident Study (KIDAS) database, which collects data from 4 regional emergency centers, to obtain data from 2011 to 2017. The Collision Deformation Classification code was obtained as vehicle's damage information, and Abbreviated Injury Scale (AIS), Maximum Abbreviated Injury Scale (MAIS), and Injury Severity Score (ISS) were used as occupant's injury information. The degree of WAD was determined using the Quebec Task Force (QTF) classification, comprised of 5 stages (QTF 0-4), depending on the occupant's pain and the physician's findings. QTF 1 was defined as mild WAD, and we used QTF 0 to define those who were uninjured. For KIDAS data between 2011 and 2016, a logistic regression model was used to identify factors affecting the occurrence of mild WAD and a predictive model was constructed. Internal validity was estimated using random bootstrapping, and external validity was evaluated by applying 2017 KIDAS data. Of the 2,629 occupants in the KIDAS database from 2011 to 2016, after applying several exclusion conditions, 459 occupants were used to develop the predictive model. The external validity of the derived predictive model was assessed using the 13 MVC occupants from the 2017 KIDAS database meeting our inclusion criteria. Among the 137 MVC occupants from the 2017 KIDAS database for analysis of the external validity of the derived predictive model, the predictive model was verified for 13 MVC occupants.
Results: Logistic regression analysis was used to derive a predictive model based on sex, age, body mass index, type of vehicle, belt status, seating row, crush type, and crush extent. This predictive model had an explanatory power of 65.5% to determine an actual QTF of 0 and 1 (c-statistics: 0.655). As a result of the external validity analysis of the predictive model using data from the 2017 KIDAS database (N = 13), sensitivity, specificity, and accuracy were 0.500, 0.857, and 0.692, respectively.
Conclusions: Using the predictive model, the results of the external validity analysis showed low sensitivity but high specificity. This predictive model provided meaningful results, with a high success rate for determining no injury to an occupant. Given our study results, future research is needed to create a more accurate predictive model that includes relevant technical and sociological factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15389588.2018.1519554 | DOI Listing |
J Health Organ Manag
January 2025
University of Malta, Msida, Malta.
Purpose: This study explores how corporate social responsibility (CSR) and artificial intelligence (AI) can be combined in the healthcare industry during the post-COVID-19 recovery phase. The aim is to showcase how this fusion can help tackle healthcare inequalities, enhance accessibility and support long-term sustainability.
Design/methodology/approach: Adopting a viewpoint approach, the study leverages existing literature and case studies to analyze the intersection of CSR and AI.
Microbiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
BMC Psychol
January 2025
Institute for Social Research in Zagreb, Centre for Educational Research and Development, Zagreb, Croatia.
Teacher well-being has increasingly become a prominent research topic due to its significant impact on various teacher and student outcomes. This focus is particularly crucial for early career teachers, who often encounter numerous challenges at the beginning of their careers, leading to elevated levels of stress and burnout. Our study aimed to examine the relationship between social and emotional competencies and burnout of early career teachers and the potential mediating role of teacher self-efficacy in this relationship.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Aims: Previous studies have shown that eGDR and TyG, as indicators of insulin resistance (IR), were key risk factors for cardiovascular disease (CVD). Our study further explored the relationship between eGDR change and new-onset CVD, and compared the predictive value of eGDR change, eGDR and TyG.
Materials And Methods: A total of 2895 participants without CVD at baseline from the China Health and Retirement Longitudinal Study (CHARLS) were included, using K-means clustering and cumulative eGDR to measure eGDR change between 2012 and 2015.
Acta Neuropathol Commun
January 2025
Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!