The reactions of labile [Re(diimine)(CO)(HO)] precursors (diimine = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen) with dicyanoargentate anion produce the dirhenium cyanide-bridged compounds [{Re(diimine)(CO)}CN)] (1 and 2). Substitution of the axial carbonyl ligands in 2 for triphenylphosphine gives the derivative [{Re(phen)(CO)(PPh)}CN] (3), while the employment of a neutral metalloligand [Au(PPh)(CN)] affords heterobimetallic complex [{Re(phen)(CO)}NCAu(PPh)] (4). Furthermore, the utilization of [Au(CN)], [Pt(CN)], and [Fe(CN)] cyanometallates leads to the higher nuclearity aggregates [{Re(diimine)(CO)NC} M] (M = Au, x = 2, 5 and 6; Pt, x = 4, 7 and 8; Fe, x = 6, 9 and 10). All novel compounds were characterized crystallographically. Assemblies 1-8 are phosphorescent both in solution and in the solid state; according to the DFT analysis, the optical properties are mainly associated with charge transfer from Re tricarbonyl motif to the diimine fragment. The energy of this process can be substantially modified by the properties of the ancillary ligands that allows to attain near-IR emission for 3 (λ = 737 nm in CHCl). The Re-Fe complexes 9 and 10 are not luminescent but exhibit low energy absorptions, reaching 846 nm (10) due to Re → Fe transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02974DOI Listing

Publication Analysis

Top Keywords

supramolecular construction
4
construction cyanide-bridged
4
cyanide-bridged diimine
4
diimine multichromophores
4
multichromophores reactions
4
reactions labile
4
labile [rediiminecoho]
4
[rediiminecoho] precursors
4
precursors diimine
4
diimine 22'-bipyridine
4

Similar Publications

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Self-assembling cyclic peptide nanotubes are fascinating supramolecular systems with promising potential for various applications, such as drug delivery, transmembrane ionic channels, and artificial light-harvesting systems. In this study, we present novel pH-responsive nanotubes based on asymmetric cyclic peptide-polymer conjugates. The pH response is introduced by a tertiary amine-based polymer, poly(dimethylamino ethyl methacrylate) (pDMAEMA) or poly(diethylamino ethyl methacrylate) (pDEAEMA) which is protonated at low pH.

View Article and Find Full Text PDF

Tailorable Ionic Frameworks for Selective Gas Adsorption and Separation: Bridging Experimental Insights with Mechanistic Understanding.

Small

December 2024

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.

The selective adsorption and separation of gases using solid adsorbents represent a crucial method for the treatment of toxic gases and the preparation of high-purity gases. The interaction forces between gas molecules and solid adsorbents are influenced by various factors, making precise design of adsorbents to achieve specific gas adsorption a pressing issue that requires urgent attention. In this study, a series of ionic frameworks constructed from Na and polyoxometalates (POMs) have been constructed through ionic interactions, and possess multiple adjustable parameters.

View Article and Find Full Text PDF

Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions.

View Article and Find Full Text PDF

Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!