Functional soft materials exhibiting distinct functionalities in response to a specific stimulus are highly desirable towards the fabrication of advanced devices with superior dynamic performances. Herein, two novel light-driven chiral fluorescent molecular switches have been designed and synthesized that are able to exhibit unprecedented reversible Z/E photoisomerization behavior along with tunable fluorescence intensity in both isotropic and anisotropic media. Cholesteric liquid crystals fabricated using these new fluorescent molecular switches as chiral dopants exhibit reversible reflection color tuning spanning the visible and infrared region of the spectrum. Transparent display devices have been fabricated using both low chirality and high chirality cholesteric films that operate either exclusively in fluorescent mode or in both fluorescent and reflection mode, respectively. The dual mode display device employing short pitch cholesteric film is able to function on demand under all ambient light conditions including daylight and darkness with fast response and high resolution. Moreover, the proof-of-concept for a "remote-writing board" using cholesteric films containing one of the light-driven chiral fluorescent molecular switches with ease of fabrication and operation is disclosed herein. Such optically rewritable transparent display devices enabled by light-driven chiral fluorescent molecular switches pave a new way for developing novel display technology under different lighting conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201807751 | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
Objective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.
Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.
Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.
Nat Chem Biol
January 2025
University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innsbruck, Austria.
Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer-ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site.
View Article and Find Full Text PDFHistopathology
January 2025
Department of Diagnostic and Molecular Pathology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Aims: Extragonadal yolk sac tumour (YST) is rare, and may present a diagnostic challenge. YST differentiation was recently reported in some somatically derived tumours in the sinonasal location and in the female genital tract, together with a SMARCB1/INI1 loss. We report two paratesticular/inguinal tumours with striking morphological and immunohistochemical similarities with YST, further expanding the spectrum of extragonadal tumours with YST-like morphology and SMARCB1/INI1 loss.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing100191, China.
To understand the clinicopathological and molecular genetic characteristics of aggressive renal mucinous tubular and spindle cell carcinoma (MTSCC). The clinical features, histology, immunophenotype, molecular characteristics and prognosis of 4 cases of metastatic/recurrent renal MTSCC that were submitted to the Peking University Third Hospital (2 cases), Institute of Urology, Peking University (one case) and Zhejiang Provincial People's Hospital (one case) from 2015 to 2020 were retrospectively reviewed and analyzed. Among the four patients, two were male and two were female.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!