Cancer metabolism in a snapshot: MRS(I).

NMR Biomed

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain.

Published: October 2019

The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1- C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.4054DOI Listing

Publication Analysis

Top Keywords

brain tumours
8
tumour
5
cancer metabolism
4
metabolism snapshot
4
mrsi
4
snapshot mrsi
4
mrsi contribution
4
contribution mrsi
4
mrsi vivo
4
vivo evaluation
4

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Progress in investigating pituitary stalk lesions: A review.

Medicine (Baltimore)

January 2025

Department of Endocrinology and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, P.R. China.

Pituitary stalk lesions are uncommon and are typically identified through pituitary magnetic resonance imaging and screening for causes of diabetes insipidus. Recent literature indicates that pituitary stalk lesions primarily manifest as pituitary stalk interruption syndrome and thickening of the pituitary stalk. The etiology of these lesions is complex and can be divided into major categories: congenital disorders, inflammatory or infectious diseases, and tumors.

View Article and Find Full Text PDF

Rationale: Peliosis hepatis (PH) is a rare disease with few clinical reports and complex etiology. However, there have been no reports of hyperprolactinemia (HPRL) leading to PH at present. This paper, through case reports, expands the understanding of the etiology of PH and the pathological damage effect of prolactin (PRL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!