DCA-MOL: A PyMOL Plugin To Analyze Direct Evolutionary Couplings.

J Chem Inf Model

Department of Biological Sciences , University of Texas at Dallas, Richardson , Texas 75080 , United States.

Published: February 2019

Direct coupling analysis (DCA) is a statistical modeling framework designed to uncover relevant molecular evolutionary relationships from biological sequences. Although DCA has been successfully used in several applications, mapping and visualizing of evolutionary couplings and direct information to a particular set of molecules requires multiple steps and could be prone to errors. DCA-MOL extends PyMOL functionality to allow users to interactively analyze and visualize coevolutionary residue-residue interactions between contact maps and structures. True positive rates for the top N pairs can be computed and visualized in real-time to evaluate the quality of residue-residue contact predictions. Different types of interactions in monomeric proteins, RNA, molecular interfaces, and protein conformational dynamics as well as multiple protein complexes can be studied efficiently within one application. DCA-MOL is available for download from http://dca-mol.cent.uw.edu.pl.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.8b00690DOI Listing

Publication Analysis

Top Keywords

evolutionary couplings
8
couplings direct
8
dca-mol pymol
4
pymol plugin
4
plugin analyze
4
analyze direct
4
direct evolutionary
4
direct coupling
4
coupling analysis
4
analysis dca
4

Similar Publications

Substitution load revisited: a high proportion of deaths can be selective.

Genetics

January 2025

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.

Haldane's Dilemma refers to the concern that the need for many "selective deaths" to complete a substitution (i.e. selective sweep) creates a speed limit to adaptation.

View Article and Find Full Text PDF

The (citrus) plant produces various phytohormones due to the significant involvement of the carotenoid cleavage oxygenase () gene family in its growth and development. genes can be divided into two main categories: (9-cis-epoxy carotenoid dioxygenase), responsible for abscisic acid (ABA) production, and (carotenoid cleavage dioxygenase), involved in pigment and strigolactone formation. To better understand the roles and positions of gene members in relation to these hormones, researchers analyzed the clementine genome.

View Article and Find Full Text PDF

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

Plant A/T-rich sequence- and zinc-binding protein (PLATZ) is a type of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. This family is essential for plant growth, development, and stress response. In this study, 15 were identified in the rice genome with complete PLATZ-conserved domains by CD-search, similar to those found in angiosperms.

View Article and Find Full Text PDF

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!