Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current scaffold-based tissue engineering approaches are subject to several limitations, such as design inflexibility, poor cytocompatibility, toxicity, and post-transplant degradation. Thus, scaffold-free tissue-engineered structures can be a promising solution to overcome the issues associated with classical scaffold-based materials in clinical transplantation. The present study seeks to optimize the culture conditions and cell combinations used to generate scaffold-free structures using a Bio-3D printing system. Human cartilage cells, human fibroblasts, human umbilical vein endothelial cells, and human mesenchymal stem cells from bone marrow are aggregated into spheroids and placed into a Bio-3D printing system with dedicated needles positioned according to 3D configuration data, to develop scaffold-free trachea-like tubes. Culturing the Bio-3D-printed structures with proper flow of specific medium in a bioreactor facilitates the rearrangement and self-organization of cells, improving physical strength and tissue function. The Bio-3D-printed tissue forms small-diameter trachea-like tubes that are implanted into rats with the support of catheters. It is confirmed that the tubes are viable in vivo and that the tracheal epithelium and capillaries proliferate. This tissue-engineered, scaffold-free, tubular structure can represent a significant step toward clinical application of bioengineered organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201800983 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!