Histone deacetylase 6 (HDAC6) is unique hydrolase within HDAC family, having pleiotropic deacetylase activity against α-tubulin, cortactin and dynein. Comprehensively, HDAC6 controls cell motility, apoptosis and protein folding, whereas alterations in its structure and function are related to the pathogenesis of cancer, neurodegeneration and inflammation. To define structural motifs which guide HDAC6 selectivity, we developed and compared three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) models for HDAC1 and HDAC6 inhibitors. The reduction of the bias in conformer generation was supported by virtual docking study by using crystal structures of human HDAC1 and HDAC6 isoforms. Following these findings, the combined ligand-based and fragment-based drug design methodologies were used in the design of selective HDAC6 inhibitors. Group of the most promising novel ligands was selected based on the predicted HDAC6 selectivity, pharmacokinetic profile, synthetic tractability, and in silico cytotoxicity against the wide range of human cancer cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/minf.201800083 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China.
With the aim of developing novel anti-SARS-CoV-2 drugs to address the ongoing evolution and emergence of drug-resistant strains, the reported SARS-CoV-2 M inhibitor was selected as a lead to find novel, highly potent, and broad-spectrum inhibitors. Using a fragment-based multilevel virtual screening strategy, 15 hit compounds were identified and subsequently synthesized. Among them, (IC = 1.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland.
This study evaluates the performance of various structure prediction tools and molecular docking platforms for therapeutic peptides targeting coronary artery disease (CAD). Structure prediction tools, including AlphaFold 3, I-TASSER 5.1, and PEP-FOLD 4, were employed to generate accurate peptide conformations.
View Article and Find Full Text PDFDrug Res (Stuttg)
January 2025
Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang China.
Fragment based novel drug identification and its validation through use of molecular dynamics and simulations.Comparing primary microcephaly genes with glioblastoma expression profiles reveals potential oncogenes, with proteins that support growth and survival in neural stem/progenitor cells likely retaining critical roles in glioblastoma. Identifying such proteins in familial and congenital microcephalic disorders offers promising targets for brain tumor therapy.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, University of Florida, Gainesville Florida 32611, United States.
Small molecules are essential for investigating the pharmacology of membrane proteins and remain the most common approach for therapeutically targeting them. However, most experimental small molecule screening methods require ligands containing radiolabels or fluorescent labels and often involve isolating proteins from their cellular environment. Additionally, most conventional screening methods are suited for identifying compounds with moderate to higher affinities ( < 1 μM) and are less effective at detecting lower affinity compounds, such as weakly binding molecular fragments.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.
During the last 20 years, the fragment-based drug discovery approach gained popularity in both industrial and academic settings due to its efficient exploration of the chemical space. This bottom-up approach relies on identifying high-efficiency small ligands (fragments) that bind to a target binding site and then rationally evolve them into mature druglike compounds. To achieve such a task, researchers rely on accurate information about the ligand binding mode, usually obtained through experimental techniques, such as X-ray crystallography or computer simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!