The quantitative structure-activity relationship models of 40 phenylhydrazine-substituted tetronic acid derivatives were established between the H nuclear magnetic resonance (NMR) and C NMR chemical shifts and the antifungal activity against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis, and Colletotrichum capsici. The models were validated by R, R , R , variance inflation factor, F, and P values testing and residual analysis. It was concluded from the models that the C NMR chemical shifts of C8, C10, C7, and the H NMR chemical shifts of Ha contributed positively to the activity against Fusarium graminearum, Botrytis cinerea, Colletotrichum capsici, and Rhizoctonia cerealis, respectively. The models indicated that decreasing the election cloud density of specific nucleuses in compounds, for example, by the substituting of electron withdrawing groups, would improve the antifungal activity. These models demonstrated the practical application meaning of chemical shifts in the quantitative structure-activity relationship study. Furthermore, a practical guide was provided for further structural optimization of the antifungal phenylhydrazine-substituted tetronic acid derivatives based on the H NMR and C NMR chemical shifts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.4830 | DOI Listing |
Anal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
Context: The analysis of the changes in the electronic structure along intrinsic reaction coordinate (IRC) paths for model reactions: (i) ethylene + butadiene cycloaddition, (ii) prototype SN2 reaction Cl + CH3Cl, (iii) HCN/CNH isomerization assisted by water, (iv) CO + HF → C(O)HF was performed, in terms of changes in the deformation density (Δr) and the deformation of MEP (ΔMEP). The main goal was to further examine the utility of the ΔMEP as a descriptor of chemical bonding, and to compare the pictures resulting from Δr and ΔMEP. Both approaches clearly show that the main changes in the electronic structure occur in the TS region.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!