The importance of how brain networks function together to create brain states has become increasingly recognized. Therefore, an investigation of eyes-open resting-state dynamic functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia patients (SP) via both functional magnetic resonance imaging (fMRI) and a novel magnetoencephalography (MEG) pipeline was completed. The fMRI analysis used a spatial independent component analysis (ICA) to determine the networks on which the dFNC was based. The MEG analysis utilized a source space activity estimate (minimum norm estimate [MNE]/dynamic statistical parametric mapping [dSPM]) whose result was the input to a spatial ICA, on which the networks of the MEG dFNC were based. We found that dFNC measures reveal significant differences between HC and SP, which depended on the imaging modality. Consistent with previous findings, a dFNC analysis predicated on fMRI data revealed HC and SP remain in different overall brain states (defined by a k-means clustering of network correlations) for significantly different periods of time, with SP spending less time in a highly connected state. The MEG dFNC, in contrast, revealed group differences in more global statistics: SP changed between meta-states (k-means cluster states that are allowed to overlap in time) significantly more often and to states that were more different, relative to HC. MEG dFNC also revealed a highly connected state where a significant difference was observed in interindividual variability, with greater variability among SP. Overall, our results show that fMRI and MEG reveal between-group functional connectivity differences in distinct ways, highlighting the utility of using each of the modalities individually, or potentially a combination of modalities, to better inform our understanding of disorders such as schizophrenia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479258 | PMC |
http://dx.doi.org/10.1089/brain.2018.0608 | DOI Listing |
Alcohol Clin Exp Res (Hoboken)
April 2023
The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA.
Background: Prenatal alcohol exposure (PAE) can result in harmful and long-lasting neurodevelopmental changes. Children with PAE or a fetal alcohol spectrum disorder (FASD) have decreased white matter volume and resting-state spectral power compared to typically developing controls (TDC) and impaired resting-state static functional connectivity. The impact of PAE on resting-state dynamic functional network connectivity (dFNC) is unknown.
View Article and Find Full Text PDFSchizophr Res
July 2019
The Mind Research Network, USA; The University of New Mexico, USA.
An investigation of differences in dynamic functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia patients (SP) was completed, using eyes-open resting state MEG data. The MEG analysis utilized a source-space activity estimate (MNE/dSPM) whose result was the input to a group spatial independent component analysis (ICA), on which the networks of our MEG dFNC analysis were based. We have previously reported that our MEG dFNC revealed that SP change between brain meta-states (repeating patterns of network correlations which are allowed to overlap in time) significantly more often and to states which are more different, relative to HC.
View Article and Find Full Text PDFBrain Connect
April 2019
1 The Mind Research Network, Albuquerque, New Mexico.
The importance of how brain networks function together to create brain states has become increasingly recognized. Therefore, an investigation of eyes-open resting-state dynamic functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia patients (SP) via both functional magnetic resonance imaging (fMRI) and a novel magnetoencephalography (MEG) pipeline was completed. The fMRI analysis used a spatial independent component analysis (ICA) to determine the networks on which the dFNC was based.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!