Revealed by an integrated electrogravimetric and viscoelastic method, slightly electrochemically reduced graphene oxide (ERGO) presents an anion preference for charge storage and delivery, while with the progressive removal of oxygen functionalities on its basal planes, cations begin to predominate in charge compensation. This "anion-to-cation" evolution in neutral aqueous media can not only affect the electrochemical charge storage, but also play an important role in electrode's viscoelasticity. It was demonstrated that oxygen functionalities could modify the interactions between graphene layers and even contribute to pseudocapacitances. However, the role of oxygen functionalities in species transfer and viscoelastic variations still remains poorly understood. Herein, a combined methodology of electrochemical quartz crystal microbalance (EQCM), ac-electrogravimetry and electroacoustic impedance measurements was proposed for characterizing the electrochemical and viscoelastic responses of graphene oxides with various degree of electrochemical reduction. With the removal of oxygen containing functional groups, ERGO electrode exhibits ( i) a gradually enhanced specific capacitance ( Cs) with increased flexibility (decreased storage moduli, G'); ( ii) a dehydration process of cations (i.e., from Na·2HO to Na·HO); and ( iii) a potential-dependent "stiffened-softened" behavior. These results open the door for a suitable design of GO-based materials for electrochemical energy storage and shed light on electronic devices where ion-selective behavior plays a key role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.8b04886 | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.
The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Carbon Science and Technology (INCAR-CSIC), 33011 Oviedo, Spain.
The growing demand for clean, decentralized energy has increased interest in blue energy, which generates power from water with different salt concentrations. Despite its potential as a renewable, low-cost energy source, optimizing electrode materials remains a challenge. This work presents a nanomaterial developed via microwave-assisted sol-gel methodology for blue energy applications, where ion diffusion and charge storage are critical.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!