Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, diethyl ether (DEE) and compressed natural gas (CNG) port fuel injection (PFI) was investigated in direct injection (DI) compression ignition engine to determine the performance, combustion, and emission behaviors. In dual fuel mode, DEE and neat diesel were used as fuel energy, whereas in homogeneous charge compression ignition (HCCI) mode, DEE, and CNG were used as fuel energy. The engine behavior was analyzed for different inlet charge temperatures. Exergy analysis has been carried out for analyzing the various availability shares in the engine. The maximum brake thermal efficiency of the engine increased at peak load from 27.31% in neat diesel to 29.12% for dual fuel mode (D + CNG). Hydrocarbon and carbon monoxide emissions were reduced and oxides of nitrogen increased with the inlet charge heating mode. Maximum exergy efficiency was observed as 57.1% in dual fuel operation. The result of this work proves that CNG in dual and HCCI are effective for engine operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-04089-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!