The present study aimed to orally deliver methylthioadenosine (MTA) to the brain employing solid lipid nanoparticles (SLNs) for the management of neurological conditions like multiple sclerosis. The stearic acid-based SLNs were below 100 nm with almost neutral zeta potential and offered higher drug entrapment and drug loading. Cuprizone-induced demyelination model in mice was employed to mimic the multiple sclerosis-like conditions. It was observed that the MTA-loaded SLNs were able to maintain the normal metabolism, locomotor activity, motor coordination, balancing, and grip strength of the rodents in substantially superior ways vis-à-vis plain MTA. Histopathological studies of the corpus callosum and its subsequent staining with myelin staining dye luxol fast blue proved the potential of MTA-loaded SLNs in the remyelination of neurons. The pharmacokinetic studies provided the evidences for improved bioavailability and enhanced bioresidence supporting the pharmacodynamic findings. The studies proved that SLN-encapsulated MTA can be substantially delivered to the brain and can effectively remyelinate the neurons. It can reverse the multiple sclerosis-like symptoms in a safer and effective manner, that too by oral route.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-019-1296-0DOI Listing

Publication Analysis

Top Keywords

brain employing
8
employing solid
8
solid lipid
8
lipid nanoparticles
8
multiple sclerosis-like
8
mta-loaded slns
8
oral delivery
4
delivery methylthioadenosine
4
methylthioadenosine brain
4
nanoparticles pharmacokinetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!