An antifouling aptasensor is described for voltammetric determination of adenosine triphosphate (ATP). A glassy carbon electrode (GCE) was modified with a graphene oxide and poly(3,4-ethylenedioxythiophene) (GO-PEDOT) composite film by electrodeposition. Next, the zwitterionic peptide (EKEKEKE) was attached. It forms an antifouling layer on the modified GCE and serves as the support for subsequent aptamer immobilization. The resulting aptasensor typically is operated at a potential of 0.18 V (vs. SCE) using hexacyanoferrate as the electrochemical probe. It has a linear response in the 0.1 pM to 1.0 μM ATP concentration range, a 0.03 pM detection limit and a sensitivity of 2674.7 μA·μM·cm. It has outstanding selectivity, satisfactory reproducibility and desired stability. It was used to quantify ATP in ATP-spiked 10% serum solutions. Graphical abstract Schematic presentation of the construction of the aptamer based electrode for voltammetric determination of ATP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-018-3211-x | DOI Listing |
Crit Rev Anal Chem
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:
In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.
View Article and Find Full Text PDFTalanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, CEP 84030-900, PR, Brazil. Electronic address:
The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.
View Article and Find Full Text PDFChempluschem
January 2025
Université de Tours: Universite de Tours, Department of chemistry, 1 JARDIN MONTAIGNE 37300 JOUE LES TOURS, 37300, JOUE LES TOURS, FRANCE.
In this paper, microporous Zn-based zeolitic imidazolate framework with the sodalite cage structure (SOD-ZIF-8) was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and N2 adsorption were employed to characterize the synthesized material. An ultra-sensitive electrochemical sensor based on highly dispersed bimetallic Ni-Pt nanoparticles immobilized on zeolitic metal-organic framework ZIF-8 for dopamine quantification is introduced for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!