A magnetic molecularly imprinted composite was prepared by reverse microemulsion using carbon dots (CDs), FeO as the co-nucleus, and a molecularly imprinted polymer (MIP; with 2,4,6-trinitrophenol as the template) acting as recognition sites. The composite of type CD/FeO@MIPs was characterized by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), zeta potentiometric analysis, X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). The results showed that the composite MIP has a spherical shape with average diameter of 200 nm. They also showed that the composite contains core-shell structures with several FeO nanoparticles and CDs embedded in each of the microsphere. The composite can extract 2,4,6-trinitrophenol (TNP) and has an imprinting factor of 3.6. It has high selectivity and sensitivity for TNP which acts as a quencher of the fluorescence of the CDs (with excitation/emission maxima at 370/470 nm). The limit of detection of this fluorometric TNP assay is 0.5 nM. The method was successfully applied to the determination of TNP in spiked tap water and river water samples, and recoveries ranged from 89.4% to 108.5% (with an RSD of <6%). Graphical abstract Schematic representation of the magnetic molecularly imprinted composite containing fluorescent carbon dots, FeO and molecularly imprinted polymer (CD/FeO@MIPs). The CD/FeO@MIPs were applied to the selective and sensitive detection of 2,4,6-trinitrophenol (TNP) by fluorometry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-3200-0DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
imprinted composite
8
composite
6
magnetic carbon
4
carbon dot
4
dot based
4
based molecularly
4
composite fluorometric
4
fluorometric detection
4
detection 246-trinitrophenol
4

Similar Publications

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction.

Plants (Basel)

December 2024

Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.

Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.

View Article and Find Full Text PDF

Oseltamivir is a drug that has been widely used to prevent and treat influenza A and B. In this work, an ultrasensitive, simple, and novel electrochemiluminescence (ECL) sensor combined with molecularly imprinted polymers (MIP-ECL) based on a graphene-like two-dimensional material, Mxene quantum dots (MQDs) was constructed to selectively detect oseltamivir. A molecularly imprinted polymer membrane containing an oseltamivir template was constructed by electropolymerization and elution of modified MQDs on a glassy carbon electrode.

View Article and Find Full Text PDF

Preparation of ofloxacin molecularly imprinted polymer Raman sensor based on magnetic graphene oxide.

Anal Bioanal Chem

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.

Ofloxacin is a commonly used quinolone antibiotic that is also used as a feed supplement in livestock production and in plant disease prevention and treatment. However, the excessive use and abuse of ofloxacin will accumulate along the food chain and endanger human health. Therefore, the development of a simple, rapid, and sensitive detection method for the determination of ofloxacin is critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!