Stimulus Level during Endurance Training: Effects on Lactate Kinetics in Untrained Men.

J Sports Med (Hindawi Publ Corp)

Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Henkestrasse 91, 91052 Erlangen, Germany.

Published: December 2018

Background/objective: Not only but particularly due to their time efficiency, High-Intensity Interval Training (HIIT) is becoming increasingly popular in fitness-oriented endurance sports. The purpose of this study was to determine the effect of a HIIT running program versus a Moderate Intensity Continuous Exercise (MICE) training running program (16 weeks each) on lactate kinetics in untrained males.

Methods: 65 healthy but untrained males (30-50 years, BMI: 27.2 ± 3.7kg/m) were randomly assigned to either an HIIT (n=33) or a waiting-control/MICE group (n=32). HIIT consisted of intervals and intense continuous running bouts at or above the individual anaerobic threshold (IANS, 95-110% of IANS-HR), while MICE focused on continuous running at 70-82.5% IANS-HR. Both programs were adjusted for "total workload". Study endpoints were time to IANS and time from IANS till "time to exhaustion" (TTE) as assessed by stepwise treadmill test.

Results: In both exercise groups time to reach IANS (MICE: 320 ± 160 s versus HIIT: 198 ± 118 s) increased significantly (p<.001), with the groups differing significantly (p<.001). Time from IANS until TTE was prolonged significantly among the HIIT group (27 ± 66s, p=.030), while among the MICE group a significant reduction of time from IANS until TTE (59 ± 109s; p=.017) was determined. Between-group difference is significant (p=.003) for this parameter. In both groups TTE increased significantly (HIIT: 27.2 ± 17.7% versus MICE: 29.0 ± 19.4%, both p<.001) at a similar level (p=.279).

Conclusion: HIIT and MICE protocols, when adjusted for total workload, similarly increased running performance in untrained male subjects; however, the underlying mechanisms differ fundamentally. Due to its effects on aerobic and anaerobic performance improvement, HIIT can be recommended for untrained individuals as a time-efficient alternative or complementary training method to MICE. However, our protocol did not confirm the general superiority of HIIT versus MICE on the key endurance parameter "time to exhaustion" that has been reported by other comparative exercise studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304585PMC
http://dx.doi.org/10.1155/2018/3158949DOI Listing

Publication Analysis

Top Keywords

lactate kinetics
8
kinetics untrained
8
running program
8
continuous running
8
time ians
8
hiit
5
stimulus level
4
level endurance
4
endurance training
4
training effects
4

Similar Publications

Kinetics of recovery and normalization of running biomechanics following aerobic-based exercise-induced muscle damage in recreational male runners.

J Sci Med Sport

January 2025

Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:

Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.

Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.

View Article and Find Full Text PDF

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Evaluation of Hypoxia Markers in Critically Ill Patients Categorized by Their Burden of Organ Dysfunction: A Novel Approach to Detect Pathophysiological and Clinical Relevance in a Secondary Analysis of a Prospective Observational Study.

Int J Mol Sci

January 2025

Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.

In critically ill patients, compromised microcirculation causes tissue hypoxia, organ failure, and death. These pathophysiological processes occur particularly in patients with high illness severity, so reliable hypoxia biomarkers should reflect this in their occurrence. This secondary analysis of a prospective study categorized patients by their burden of organ dysfunction (BOD) using the cohort's median initial sequential organ failure assessment (SOFA) score of 8 as a cutoff.

View Article and Find Full Text PDF

2,3-Butanediol dehydrogenase is more efficient than acetoin reductase at metabolizing reserve carbon to improve carbon cycling pathways in Lactococcus lactis N8.

Int J Biol Macromol

January 2025

School of Life Science, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

Acetoin (AC) and 2,3-butanediol (2,3-BDO) are metabolites produced by lactic acid bacteria using glucose as a carbon source. These two metabolites act as carbon reserves and can be reutilised by the cells. In this study, we investigated the enzymatic characteristics of acetoin reductase (ButA) and 2,3-butanediol dehydrogenase (ButB).

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!