Recent advances in understanding the physiology of hypoxic sensing by the carotid body.

F1000Res

Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA.

Published: March 2019

Hypoxia resulting from reduced oxygen (O ) levels in the arterial blood is sensed by the carotid body (CB) and triggers reflex stimulation of breathing and blood pressure to maintain homeostasis. Studies in the past five years provided novel insights into the roles of heme oxygenase-2 (HO-2), a carbon monoxide (CO)-producing enzyme, and NADH dehydrogenase Fe-S protein 2, a subunit of the mitochondrial complex I, in hypoxic sensing by the CB. HO-2 is expressed in type I cells, the primary O2-sensing cells of the CB, and binds to O with low affinity. O -dependent CO production from HO-2 mediates hypoxic response of the CB by regulating H S generation. Mice lacking NDUFS2 show that complex I-generated reactive oxygen species acting on K channels confer type I cell response to hypoxia. Whether these signaling pathways operate synergistically or independently remains to be studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284772PMC
http://dx.doi.org/10.12688/f1000research.16247.1DOI Listing

Publication Analysis

Top Keywords

hypoxic sensing
8
carotid body
8
advances understanding
4
understanding physiology
4
physiology hypoxic
4
sensing carotid
4
body hypoxia
4
hypoxia reduced
4
reduced oxygen
4
oxygen levels
4

Similar Publications

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.

View Article and Find Full Text PDF

Cardiotoxicity of tris(2-chloroethyl) phosphate exposure: Insights into the role of oxygen sensor mediated energy metabolism remodeling.

J Hazard Mater

January 2025

Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China. Electronic address:

Tris(2-chloroethyl) phosphate, an extensively used organophosphorus flame retardant in consumer products, has caused pervasive environmental contamination and increased human exposure, raising concerns about its cardiotoxic potential. However, the detailed toxicological profile, particularly concerning the crucial cardiac energy metabolism, and the precise mechanisms remain poorly understood. This study in C57BL/6 J mice exposed to TCEP for 36 days at varying doses revealed cardiac dysfunction, structural abnormalities, and hypoxia.

View Article and Find Full Text PDF

Anastomotic leakage (AL) is one of the most devastating complications after colorectal surgery. The verification of the adequate perfusion of the anastomosis is essential to ensuring anastomosis integrity following colonic resections. This study aimed to evaluate the efficacy of measuring the electrical activity of the colonic muscularis externa at an anastomosis site for perfusion analysis following colorectal surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!