Effects of UVC Irradiation on Growth and Apoptosis of and .

Interdiscip Perspect Infect Dis

Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Published: December 2018

and are important fungal species isolated from immunocompromised patients. Previous studies have demonstrated that these filamentous fungi exist as saprophytes in the soil and showed the highest minimum inhibitory concentration to several drugs. We aimed to examine how UVC affects the and by investigating the role of UVC on growth, induction of apoptosis by ethidium bromide (EB)/acridine orange (AO) staining, and transcriptomic study of caspase recruitment domain family, member 9 (CARD-9) gene. Our studies showed that 15 minutes of exposure to UVC light effectively increased reduction in both organisms and caused changes in colony morphology, color, and hyphal growth pattern. After 15 min of UVC irradiation, apoptotic cells were quantitated by EB/AO staining, and the percentage of apoptosis was 96.06% in and 28.30% in . CARD-9 gene expression results confirmed that apoptosis was induced in and after UVC treatment and that showed a higher expression of apoptosis signaling than . Our study explored the effects of UVC in the inactivation of and . We hope that our data is useful to other researchers in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304556PMC
http://dx.doi.org/10.1155/2018/3748594DOI Listing

Publication Analysis

Top Keywords

effects uvc
8
uvc irradiation
8
card-9 gene
8
uvc
6
apoptosis
5
irradiation growth
4
growth apoptosis
4
apoptosis fungal
4
fungal species
4
species isolated
4

Similar Publications

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

The effectiveness of ultraviolet-C light-emitting diodes (UVC LEDs) is currently limited by the lack of suitable encapsulation materials, restricting their use in sterilization, communication, and in vivo cancer tumor inhibition. This study evaluates various silicone oils for UVC LED encapsulation. A material aging experiment was conducted on CF1040 (octamethylcyclotetrasiloxane), HF2020 (methyl hydro polysiloxanes), and MF2020-1000 (polydimethylsiloxane) under UVC radiation for 1000 h.

View Article and Find Full Text PDF

Effects of the Interface Properties on the Performance of UV-C Photoresistors: Gallium Oxide as Case Study.

Sensors (Basel)

January 2025

Department of Mathematical, Physical and Computer Sciences, University of Parma, Viale delle Scienze 7/A, 43124 Parma, Italy.

Electrical contacts are of the greatest importance as they decisively contribute to the overall performance of photoresistors. Undoped κ-GaO is an ideal material for photoresistors with high performance in the UV-C spectral region thanks to its intrinsic solar blindness and extremely low dark current. The quality assessment of the contact/κ-GaO interface is therefore of paramount importance.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

Energy delivered at different wavelengths causes different types of damage to DNA. PC-3, FaDu, 4T1 and B16-F10 cells were irradiated with different wavelengths of ultraviolet light (UVA/UVC) and ionizing radiation (X-ray). Furthermore, different photosensitizers (ortho-iodo-Hoechst33258/psoralen/trioxsalen) were tested for their amplifying effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!