It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na and Cl Only protons (H) can diffuse through monolayer water inside the capillaries. These observations improve our understanding of molecular transport at the atomic scale.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aau6771DOI Listing

Publication Analysis

Top Keywords

monolayer water
8
protein channels
8
complete steric
4
steric exclusion
4
exclusion ions
4
ions proton
4
proton transport
4
transport confined
4
confined monolayer
4
water
4

Similar Publications

A novel biochar material with magnetic modification by MnFeO and surficial hydroxyl grafting (h-MFO-BC) was synthesized for capturing HMs (Cd, Pb and Cu) and their competition in composite systems was investigated. The modification of hydroxyl considerably improved the adsorption capacity of HMs. Chemisorption and monolayer and homogeneous reaction dominated adsorption processes.

View Article and Find Full Text PDF

Calcium phosphates are often used for biomedical applications. Hydroxyapatite, for example, has a wide range of applications because it mimics the mineral component of natural bone. Widespread interest in the catalytic properties of ceria is due to its use in automotive catalytic converters.

View Article and Find Full Text PDF

SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping.

Biosensors (Basel)

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Konjac glucomannan foams integrated with bilayer phase change microcapsules for efficient heat storage and thermal insulation.

Carbohydr Polym

March 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

The traditional foams can only block heat loss, and cannot effectively store and release heat energy on demand to extend the insulation time. In this work, the paraffin-rich monolayer microcapsules were prepared using negatively charged phosphorylated cellulose nanofibers (CNF) as the emulsifier of Pickering emulsion. The positive chitosan was assembled on the surface of the monolayer microcapsules through an electrostatic layer-by-layer self-assembly method to prepare the bilayer microcapsules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!