Impact of uteroplacental insufficiency on ovarian follicular pool in the rat.

Reprod Biol Endocrinol

NORDFERTIL Research Lab Stockholm, Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Visionsgatan 4; J9:30, SE-171 64, Solna, Stockholm, Sweden.

Published: January 2019

Background: A low oxygen supply to the fetus causes intrauterine growth restriction and can affect gonadal development of the offspring, having a potential impact on fertility. We investigated histology and gene expression in the postnatal rat ovary after fetal hypoxia induced by uterine artery ligation.

Methods: Sprague-Dawley rats underwent uterine artery ligation at day 19 of gestation. Offspring were sacrificed at 5, 20 and 40 days post-partum. Follicles were counted and classified in hematoxylin-eosin stained sections. Gene expression of 90 genes was analyzed by TaqMan® Low Density Array.

Results: A significantly lower number of total and primordial follicles was detected in 20 days post-partum intrauterine growth restricted animals. Follicle density was not different at 40 days post-partum, suggesting that compensatory mechanisms occurred during the pre-pubertal window. Uterine artery ligation modified the expression of 24 genes involved in different cellular functions, among which proliferation, apoptosis and metabolism.

Conclusion: Ovarian follicle pool was affected by fetal hypoxia in early life, but this effect did not persist in puberty. Genes involved in cellular processes were affected at all ages, potentially implying long-term genetic alterations. Further analyses are needed to elucidate later effects of fetal hypoxia on ovarian function and fertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329190PMC
http://dx.doi.org/10.1186/s12958-019-0453-3DOI Listing

Publication Analysis

Top Keywords

fetal hypoxia
12
uterine artery
12
intrauterine growth
8
gene expression
8
artery ligation
8
40 days post-partum
8
expression genes
8
genes involved
8
involved cellular
8
impact uteroplacental
4

Similar Publications

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Graft ischemia post cell transplantation to the brain: Glucose deprivation as the primary driver of rapid cell death.

Neurotherapeutics

January 2025

School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK; Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany. Electronic address:

Replacing cells lost during the progression of neurodegenerative disorders holds potential as a therapeutic strategy. Unfortunately, the majority of cells die post-transplantation, which creates logistical and biological challenges for cell therapy approaches. The cause of cell death is likely to be multifactorial in nature but has previously been correlated with hypoxia in the graft core.

View Article and Find Full Text PDF

Selective Fetal Growth Restriction Leading to Cerebral Injury in Monochorionic Twins: A Case Report.

Cureus

December 2024

Neonatology Department, Daniel de Matos Maternity, Coimbra Local Health Unit, Coimbra, PRT.

Monochorionic twin pregnancies carry a risk of perinatal complications due to shared placental anastomoses, which can cause uneven blood distribution and lead to conditions like selective fetal growth restriction (sFGR). This case describes a monochorionic pregnancy complicated by preeclampsia and late-onset sFGR of twin B. Labor was prematurely induced and a 45% weight discordance between the twins was confirmed.

View Article and Find Full Text PDF

Acute maternal hyperoxygenation to predict hypoxia and need for emergency intervention in fetuses with transposition of the great arteries: a pilot study.

J Am Soc Echocardiogr

January 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Background: Newborns with transposition of the great arteries (TGA) are at risk of severe hypoxia from inadequate atrial mixing, closure of the arterial duct and/or pulmonary hypertension (PPHN). Acute maternal hyperoxygenation (AMH) might assist in identifying at-risk fetuses. We report pulmonary vasoreactivity to AMH in TGA fetuses and its relationship to early postnatal hypoxia and requirement for emergency balloon atrial septostomy (e-BAS).

View Article and Find Full Text PDF

Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!