The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat.

BMC Genomics

Key Laboratory of Wheat Biology & Genetic Improvement on North Yellow & Huai River Valley, Ministry of Agriculture, National Engineering Laboratory for Wheat & Maize, Institute of Crop Science, Shandong Academy of Agricultural Sciences (SAAS), #202, Road of Gongyebei, Jinan, 250100, China.

Published: January 2019

Background: Hexaploid bread wheat (Triticum aestivum L) arose by two polyploidisation events from three diploid species with homoeologous genomes. Nullisomic-tetrasomic (nulli-tetra or NT) lines are aneuploid wheat plants lacking two and adding two of six homoeologous chromosomes. These plants can grow normally, but with significantly morphological variations because the adding two chromosomes or the remaining four chromosomes compensate for those absent. Despite these interesting phenomena, detailed molecular mechanisms underlying dosage deletion and compensation in these useful genetic materials have not been determined.

Results: By sequencing the transcriptomes of leaves in two-week-old seedlings, we showed that the profiles of differentially expressed genes between NT stocks for homoeologous group 7 and the parent hexaploid Chinese Spring (CS) occurred throughout the whole genome with a subgenome and chromosome preference. The deletion effect of nulli-chromosomes was compensated partly by the tetra-chromosomes via the dose level of expressed genes, according to the types of homoeologous genes. The functions of differentially regulated genes primarily focused on carbon metabolic process, photosynthesis process, hormone metabolism, and responding to stimulus, and etc., which might be related to the defective phenotypes that included reductions in plant height, flag leaf length, spikelet number, and kernels per spike.

Conclusions: The perturbation of the expression levels of transcriptional genes among the NT stocks for homoeologous group 7 demonstrated the gene dosage effect of the subgenome at the genome-wide level. The gene dosage deletion and compensation can be used as a model to elucidate the functions of the subgenomes in modern polyploid plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327598PMC
http://dx.doi.org/10.1186/s12864-018-5421-3DOI Listing

Publication Analysis

Top Keywords

stocks homoeologous
12
homoeologous group
12
bread wheat
8
dosage deletion
8
deletion compensation
8
expressed genes
8
genes stocks
8
gene dosage
8
homoeologous
6
genes
5

Similar Publications

Wheat lines harboring wild-relative chromosomes can be karyotypically unstable during long-term maintenance. Tissue culture exacerbates chromosomal instability but appears inefficient to induce somatic homoeologous exchange between alien and wheat chromosomes. We assessed if long-term refrigerator storage with regular renewal via self-fertilization, a widely used practice for crop germplasm maintenance, would ensure genetic fidelity of alien addition lines, and explored the possibility of inducing somatic homoeologues exchange by tissue culture.

View Article and Find Full Text PDF

Powdery mildew of wheat is a foliar disease that is spread worldwide. Cultivation of resistant varieties is the most effective, economical, and environmentally friendly strategy to curb this disease. Powdery mildew resistance genes () are the primary resources for resistance breeding, and new genes are in constant demand.

View Article and Find Full Text PDF

Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous.

View Article and Find Full Text PDF

The identification of genes of agronomic interest in bread wheat ( L.) is hampered by its allopolyploid nature (2n = 6x = 42; AABBDD) and its very large genome, which is largely covered by transposable elements. However, owing to this complex structure, aneuploid stocks can be developed in which fragments or entire chromosomes are missing, sometimes resulting in visible phenotypes that help in the cloning of affected genes.

View Article and Find Full Text PDF

Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library.

Theor Appl Genet

January 2020

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.

A cytological map of Haynaldia villosa chromosome arm 4VS was constructed to facilitate the identification and utilization of beneficial genes on 4VS. Induction of wheat-alien chromosomal structure aberrations not only provides new germplasm for wheat improvement, but also allows assignment of favorable genes to define physical regions. Especially, the translocation or introgression lines carrying alien chromosomal fragments with different sizes are useful for breeding and alien gene mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!