The protein S-nitrosylation of splicing and translational machinery in vascular endothelial cells is susceptible to oxidative stress induced by oxidized low-density lipoprotein.

J Proteomics

National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China. Electronic address:

Published: March 2019

Oxidized low-density lipoprotein (ox-LDL) can impair endothelial function and lead to the atherosclerosis development. Protein S-nitrosylation is sensitive to cellular redox state and acts as a crucial regulator and executor of nitric oxide (NO) signaling pathways. Aberrant S-nitrosylation contributes to the pathogenesis of cardiovascular and cerebrovascular diseases. However, the effect of ox-LDL on S-nitrosylation and its significance for endothelial dysfunction have not been studied at proteome level. Herein, the combined quantitative analysis of proteome and S-nitrosoproteome was performed using an integrated biotin switch and iTRAQ labeling approach in EA.hy926 cell line derived from human umbilical vein endothelial cell (HUVEC) treated with ox-LDL. A total of 2204 S-nitrosylated (SNO) peptides of 1318 SNO-proteins were quantified. Notably, 352 SNO-peptides of 262 SNO-proteins were significantly regulated after excluding S-nitrosylation changes caused by protein expression alterations. Many of them belonged to mRNA splicing, ribosomal structure and translational regulatory proteins, covering the entire translation process. The results indicated that S-nitrosylation of the splicing and translational machinery in vascular endothelial cells was susceptible to ox-LDL. Abnormal protein S-nitrosylation may be one pivotal mechanism underlying endothelial dysfunction induced by ox-LDL. This study potentially enriches the present understanding of pro-atherogenic effect of ox-LDL from the perspective of S-nitrosylation. SIGNIFICANCE: The role of ox-LDL in endothelial dysfunction and atherosclerosis development has been recognized from the aspect of impaired NO production. However, its effect on S-nitrosylation, which is directly related to NO signaling pathway, still remains largely unexplored. Our work initially provided a systematic characterization of S-nitrosoproteome in ox-LDL-treated endothelial cells after ruling out the changes of S-nitrosylation modification caused by protein expression alone. MS-based approach coupled with iTRAQ technique indicated 262 SNO-proteins were significantly regulated. Functional enrichment and interaction network analysis revealed that proteins involved in mRNA splicing and translational machinery were susceptible to abnormal S-nitrosylation under ox-LDL treatment. This achievement suggested one potential mechanism underlying endothelial dysfunction induced by ox-LDL from the perspective of S-nitrosoproteome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2019.01.001DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
protein s-nitrosylation
12
splicing translational
12
translational machinery
12
endothelial cells
12
s-nitrosylation
10
endothelial
9
ox-ldl
9
s-nitrosylation splicing
8
machinery vascular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!