Background: In February 2012 the ten-valent pneumococcal conjugate vaccine (PCV10) with a 2+1 doses schedule (3, 5, 12 or 14 months of age) without catch-up vaccination was introduced in Austria. We assessed direct and indirect vaccine effects on invasive pneumococcal disease (IPD) by a population-based intervention study.
Methods: The study period was divided into pre- (2009-2011) and post-period (2013-2017, February), regarding 2012 as transition year. Outcomes were defined as PCV10 ST-IPD, the PCV10-related ST 6A and 19A IPD and non-PCV10 excluding ST 6A-/19A-IPD (NVT-IPD). We used national surveillance data and compared average monthly incidence rate (IR) between pre- and post-period among <5, 5-49 and ≥50 years old. Additionally, for the 5-49 and ≥50 years old, and the 50-59 and ≥60 years old, we analyzed monthly incidence data of the pre-, post-period, and estimated trend and level changes by using a segmented time-series regression.
Results: The PCV-10 IPD was reduced by 58% (95% CI: 30%; 74%) and 67% (95% CI: 32%; 84%) among <5 and ≥50 years old; the reduction in ≥60 years was 71% (95% CI: 36%; 88%). There were no significant changes in the pre-post-rate or incidence trend of NVT-IPD in the <5 and ≥50 years old. ST-specific analyses revealed no ST 6A- and ST 19A IPD decline in any age-group, and a ST 8 IPD increase among ≥50 years old (IR ratio: 3.5; 95% CI: 1.7; 7.2). We found no vaccine effects among 5-49 years old.
Conclusions: Our study adds to the evidence on direct and indirect protection of a childhood PCV10 vaccine program. Elderlies seem to benefit the most. Findings did not support PCV 10 cross-protection, but indicate replacement at least for ST 8 among the ≥50 years old. Follow-up analyses of IPD surveillance data are needed to fully characterize the magnitude of serotype replacement and further vaccine-attributable IPD reduction with time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328268 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210081 | PLOS |
Pediatr Infect Dis J
January 2025
From the GPIP, Groupe de pathologie infectieuse pédiatrique, Créteil, France.
J Infect Public Health
January 2025
Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Mary Elizabeth's Hospital, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Background: Respiratory infections substantially impact pediatric health. The COVID-19 pandemic introduced widespread non-pharmaceutical interventions, which influenced the incidence of common respiratory infections. This comprehensive study investigates the impact of these interventions on the incidence of respiratory syncytial virus, influenza, and invasive pneumococcal disease in Danish children.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:
Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.
View Article and Find Full Text PDFVaccine
January 2025
Department of Pediatrics, Section of Infectious Diseases and Global Health, Yale University School of Medicine, New Haven, CT, United States; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States; Yale Institute for Global Health, Yale University, New Haven, CT, United States; Yale Center for Infection and Immunity, Yale University, New Haven, CT, United States. Electronic address:
Background: Pneumococcal conjugate vaccines (PCV) reduced invasive disease, but the overall prevalence of pneumococcal nasopharyngeal colonization among children has not changed significantly. Our knowledge of which serotypes, once colonized, hold a higher likelihood to cause invasive disease is limited.
Methods: Serotype-specific invasive capacity (IC) of Streptococcus pneumoniae was estimated using an enhanced population-based invasive pneumococcal disease (IPD) surveillance in children <7 years of age in Massachusetts and surveillance of nasopharyngeal (NP) colonization in selected Massachusetts communities in corresponding respiratory seasons.
Aging Cell
January 2025
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!