Our experimental work focused on the applicability of a quite novel process for wastewater treatment, i.e. a microwave (MW) irradiation-enhanced Fenton-like method. The aim of our research was to detect and evaluate the efficiency of this oxidation process, during the treatment of meat industry wastewater containing a high concentration of organic material. The efficiency was defined by the measurement of the change in COD (chemical oxygen demand, with an initial COD value of 1,568 mg L), and with the determination of dielectric parameters during the process. It can be summarized that MW irradiation could assist in a Fenton-like oxidation process to achieve higher organic matter removal. Furthermore, our experimental results and statistical analysis show that there can be found a correlation between the effects of applied MW energy and the dosage of HO/FeSO. If the intensity of MW irradiation and the amount of FeSO were set higher, the decrease of COD and the increase of tanδ (the dielectric loss tangent) were definitely more significant. With the application of 60 kJ MWE and a 0.14 mgFe/mgCOD dosage, the COD removal efficiency was more than 40%, and the increment of tanδ was nearly threefold. Considering the effects of MW-specific process parameters, it can be concluded that the power intensity of MW-oxidation treatment has a significant effect on COD decrease, if the irradiated MW energy was set at lower (30-45 kJ) levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2018.491 | DOI Listing |
J Sci Food Agric
December 2024
College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
Background: With increasing consumer demand for healthy and sustainable food, plant proteins have been used widely in meat substitutes, dairy alternatives, and functional foods. However, in comparison with animal proteins, plant proteins often exhibit weaker functional properties, such as solubility, emulsifying, and gelation, which limit their application in food processing. The aim of this study was to investigate the effects of high-intensity ultrasound treatments (HIUTs) on the physicochemical properties, structural characteristics, emulsifying properties, and antioxidant capacity of shiitake mushroom protein isolate (SMPI).
View Article and Find Full Text PDFNat Commun
December 2024
Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou, China.
Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.
View Article and Find Full Text PDFOpen Vet J
November 2024
Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia.
Paratuberculosis is an infectious disease caused by subspecies (MAP). Typically, ruminant animals including cattle, buffalo, goats, and sheep are infected with MAP. Animals get infected with MAP in a number of ways, such as by eating or drinking contaminated food or water, or by nursing from an infected mother who may have contaminated teats or directly shed the organism in milk or colostrum.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Nursing, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq.
Background: Ozone (O) is a promising alternative antibacterial agent that has recently been used in meat processing. The understanding of the appropriate functional settings of O for addressing food safety problems is still insufficient.
Aim: The aim of this study was, therefore, to investigate the effects of exposure to O on the bacteriological quality of retail meat inoculated with at refrigeration temperatures.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!