Birth defects, the ventricular septal defect (VSD) in particular, have major public health significance. There is evidence that genetic factors play a role in VSD risk. We report here our findings on the relationship between VSD and microRNA (miRNA)-3691-3p target sequence single-nucleotide polymorphisms (SNPs) in the 3' untranslated region of the NOTCH1 gene. Functional SNPs in NOTCH1 target sequence were screened from the SNP database. A case-control study in a large Chinese Han population sample of 350 children with VSD and 430 healthy controls examined the association between rs6563 SNPs and VSD. NOTCH1 wild and mutant recombinant expression vectors were constructed by the luciferase reporter gene system. The effects of miRNA on gene regulatory effects were also analyzed. The allelic distributions at the locus rs6563 showed statistically significant susceptibility to VSD (odds ratio [OR] = 1.502, 95% confidence interval [CI] = 1.209-1.866, p < 0.001). Compared with the subjects with G/G genotype, individuals with G/A genotype or A/A genotype showed ORs 1.414 (95% CI = 1.047-1.908, p = 0.020) and 2.366 (95% CI = 1.430-3.914, p < 0.001), respectively. The miRNA-3691-3p reduced luciferase activity of the A allele. The rs6563G > A genetic variation appears to be associated with congenital VSD through gene regulatory effects of miR-3691-3p on the NOTCH1 gene. Further studies in other population samples are called for diagnostics and public health innovation in relation to birth defects.

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2018.0171DOI Listing

Publication Analysis

Top Keywords

notch1 gene
8
ventricular septal
8
septal defect
8
target sequence
8
vsd
6
notch1
4
gene microrna
4
microrna target
4
target variation
4
variation ventricular
4

Similar Publications

Objective: This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies.

Methods: Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.

Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Objective: To analyze the clinical characteristics and molecular biomarkers of adult T-cell lymphoblastic lymphoma (T-LBL) to identify prognostic factors, and to evaluate the efficacy of different chemotherapy regimens, providing a basis for optimizing treatment strategies for T-LBL.

Methods: A total of 89 Patients aged 18-72 years with T-LBL, confirmed via histopathological examination of lymph nodes, extranodal tissues, or bone marrow, were retrospectively included. Clinical data, treatment details, and mutational profiles were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!