Chemical library screening approaches that focus exclusively on catalytic events may overlook unique effects of protein-protein interactions that can be exploited for development of specific inhibitors. Phosphotyrosyl (pTyr) residues embedded in peptide motifs comprise minimal recognition elements that determine the substrate specificity of protein tyrosine phosphatases (PTPases). We incorporated aminooxy-containing amino acid residues into a 7-residue epidermal growth factor receptor (EGFR) derived phosphotyrosine-containing peptide and subjected the peptides to solution-phase oxime diversification by reacting with aldehyde-bearing druglike functionalities. The pTyr residue remained unmodified. The resulting derivatized peptide library was printed in microarrays on nitrocellulose-coated glass surfaces for assessment of PTPase catalytic activity or on gold monolayers for analysis of kinetic interactions by surface plasmon resonance (SPR). Focusing on amino acid positions and chemical features, we first analyzed dephosphorylation of the peptide pTyr residues within the microarrayed library by the human dual-specificity phosphatases (DUSP) DUSP14 and DUSP22, as well as by PTPases from poxviruses (VH1) and Yersinia pestis (YopH). In order to identify the highest affinity oxime motifs, the binding interactions of the most active derivatized phosphopeptides were examined by SPR using noncatalytic PTPase mutants. On the basis of high-affinity oxime fragments identified by the two-step catalytic and SPR-based microarray screens, low-molecular-weight nonphosphate-containing peptides were designed to inhibit PTP catalysis at low micromolar concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132114 | PMC |
http://dx.doi.org/10.1021/acscombsci.8b00122 | DOI Listing |
Discov Oncol
January 2025
Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China.
Background: Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy. Although previous research has explored associations between plasma proteins and CLL, the causal relationships remain unclear. This study used Mendelian randomization (MR) to investigate the causal relationship between 7156 plasma proteins and CLL risk.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
This study aims to identify novel loci associated with sarcopenia-related traits in UK Biobank (UKB) through multi-trait genome-wide analysis. To identify novel loci associated with sarcopenia, we integrated the genome-wide association studies (GWAS) of usual walking pace (UWP) and hand grip strength (HGS) to conduct a joint association study known as multi-trait analysis of GWAS (MTAG). We performed a transcriptome-wide association study (TWAS) to analyze the results of MTAG in relation to mRNA expression data for genes identified in skeletal muscle.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
Background: Alzheimer's disease (AD) hallmarks are amyloid plaques and tau tangles. APOE and TREM2 are the strongest genetic risk factors for AD. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized to play a central role in amyloid beta clearance and microglia activation in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale University School of Medicine, New Haven, CT, USA.
Background: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
All India Institute of Medical Sciences, Nagpur, Nagpur, Maharashtra, India.
Background: Multiple Sclerosis (MS) is a chronic, etiologically complex disease of the central nervous system (CNS) characterized by inflammation, demyelination, and neuronal damage. MS has seven categories based on disease course. Seventy to eighty percent of individuals with MS initially develop a clinical pattern with periodic relapses and remissions, called relapsing-remitting MS (RRMS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!