Background: Cardiac dysfunction and arrhythmia are common and onerous cardiovascular events in end-stage renal disease (ESRD) patients, especially those on dialysis. Fibroblast growth factor (FGF)-23 is a phosphate-regulating hormone whose levels dramatically increase as renal function declines. Beyond its role in phosphorus homeostasis, FGF-23 may elicit a direct effect on the heart. Whether FGF-23 modulates ventricular cardiac rhythm is unknown, prompting us to study its role on excitation-contraction (EC) coupling.
Methods: We examined FGF-23 in vitro actions on EC coupling in adult rat native ventricular cardiomyocytes using patch clamp and confocal microscopy and in vivo actions on cardiac rhythm using electrocardiogram.
Results: Compared with vehicle treatment, FGF-23 induced a significant decrease in rat cardiomyocyte contraction, L-type Ca2+ current, systolic Ca2+ transients and sarcoplasmic reticulum (SR) load and SR Ca2+-adenosine triphosphatase 2a pump activity. FGF-23 induced pro-arrhythmogenic activity in vitro and in vivo as automatic cardiomyocyte extracontractions and premature ventricular contractions. Diastolic spontaneous Ca2+ leak (sparks and waves) was significantly increased by FGF-23 via the calmodulin kinase type II (CaMKII)-dependent pathway related to hyperphosphorylation of ryanodine receptors at the CaMKII site Ser2814. Both contraction dysfunction and spontaneous pro-arrhythmic Ca2+ events induced by FGF-23 were blocked by soluble Klotho (sKlotho).
Conclusions: Our results show that FGF-23 reduces contractility and enhances arrhythmogenicity through intracellular Ca2+ mishandling. Blocking its actions on the heart by improving sKlotho bioavailability may enhance cardiac function and reduce arrhythmic events frequently observed in ESRD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfy392 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!