Background: The aims of this study were to characterize the spinal deformity of patients with Escobar syndrome, describe results of growth-friendly treatments, and compare these results with those of an idiopathic early-onset scoliosis (EOS) cohort to determine whether the axial stiffness in Escobar syndrome limited correction.
Methods: We used 2 multicenter databases to review the records of 8 patients with EOS associated with Escobar syndrome who had at least 2-year follow-up after initiation of growth-friendly treatment from 1990 to 2016. An idiopathic EOS cohort of 16 patients matched for age at surgery (±1 y), postoperative follow-up (±1 y), and initial curve magnitude (±10 degrees) was identified. A randomized 1:2 matching algorithm was applied (α=0.05).
Results: In the Escobar group, spinal deformity involved 7 to 13 vertebrae and ranged from no vertebral anomalies in 3 patients to multiple segmentation defects in 6 patients. Mean age at first surgery was 5 years (range, 1.4 to 7.8 y) with a mean follow-up of 7.5 years (range, 4.0 to 10 y). Mean major curve improved from 76 degrees at initial presentation, to 43 degrees at first instrumentation, to 37 degrees at final follow-up (both P<0.001). Mean pelvic obliquity improved from 16 degrees (range, 5 to 31 degrees) preoperatively to 4 degrees (range, 0 to 8 degrees) at final follow-up (P=0.005). There were no differences in the mean percentage of major curve correction between the idiopathic EOS and Escobar groups at the immediate postoperative visit (P=0.743) or final follow-up (P=0.511). There were no differences between the cohorts in T1-S1 height at initial presentation (P=0.129) or in growth per month (P=0.211).
Conclusions: Multiple congenital fusions and spinal curve deformity are common in Escobar syndrome. Despite large areas of congenital fusion, growth-friendly constructs facilitate spinal growth and improve curve correction. These results are comparable to those in idiopathic EOS.
Level Of Evidence: Level III-case-control study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BPO.0000000000001315 | DOI Listing |
BMJ Case Rep
September 2024
Fetal Medicine, St George's University Hospitals NHS Foundation Trust, London, UK
Bruck syndrome is a rare, autosomal-recessive condition associated with features of both arthrogryposis and osteogenesis imperfecta. It is characterised by congenital large joint contractures with pterygia and bone fragility, leading to fractures and deformities, along with a short stature caused by progressive skeletal deformities. There are fewer than 50 described cases of Bruck syndrome in the literature, with no reported cases in pregnancy.
View Article and Find Full Text PDFAm J Med Genet A
November 2024
Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA.
Although next-generation sequencing has enabled diagnoses for many patients with Mendelian disorders, the majority remain undiagnosed. Here, we present a sibling pair who were clinically diagnosed with Escobar syndrome, however targeted gene testing was negative. Exome sequencing (ES), and later genome sequencing (GS), revealed compound heterozygous TTN variants in both siblings, a maternally inherited frameshift variant [(NM_133378.
View Article and Find Full Text PDFNeurology
July 2024
From the Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur.
Clin Genet
October 2024
Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.
Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome.
View Article and Find Full Text PDFPrenat Diagn
April 2024
Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Congenital myopathies are a genetically heterogeneous group of neuromuscular disorders that commonly present with congenital hypotonia and weakness but can also present broadly. The most severe presentation is neonatal with arthrogryposis and, rarely, fetal akinesia and pterygia, features also seen in lethal multiple pterygium syndrome (LMPS). We describe two fetuses with similar phenotype, including hydrops fetalis, large cystic hygromas, bilateral talipes, and fetal akinesia in the second trimester.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!