Waardenburg syndrome type 2 (WS2) is a rare genetic disorder, characterized by bright blue eyes, moderate to profound hearing loss and pigmental abnormalities of the hair and skin. Between 10 and 20 mutations in the SRY‑box 10 (SOX10) gene were previously identified to be associated with WS2. The present study aimed to identify the genetic causes of WS2 in a Chinese family. Clinical and molecular analyses were performed to genetically characterize a Chinese family with two cases of WS2. The clinical data of the proband were collected using a questionnaire. The genomic DNA was extracted from peripheral blood samples of each individual in the family, and 168 candidate genes associated with hearing loss were sequenced using the Illumina HiSeq 2000 and confirmed by Sanger sequencing. A heterozygous nonsense mutation [substitution; position 127; cytosine to thymine (c.127C>T)] was identified in exon 2 of SOX10 (transcript ID: NM_006941.3) in the proband and the mother; however, not in other family members or healthy controls. The novel nonsense heterozygous mutation may cause the replacement of codon 43 [arginine (Arg)] with a stop codon (Arg43stop), leading to premature termination of protein translation. The novel nonsense heterozygous mutation c.127C>T in the SOX10 gene was considered to be the cause of WS2 in the family. This mutation has not been identified in any databases, to the best of the authors' knowledge, including The Single Nucleotide Polymorphism Database, The Human Gene Mutation Database, 1000 Genomes Project and ClinVar and Exome Sequencing Project v. 6500.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2019.9815DOI Listing

Publication Analysis

Top Keywords

sox10 gene
12
chinese family
12
waardenburg syndrome
8
hearing loss
8
novel nonsense
8
nonsense heterozygous
8
heterozygous mutation
8
mutation
6
family
6
ws2
5

Similar Publications

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

Arctiin alleviates the progression of osteoarthritis by regulating the cholesterol metabolic pathway.

Sci Rep

January 2025

Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology; Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou, 510180, China.

Osteoarthritis (OA) is a multi-factorial degenerative joint disease with unclear pathogenesis. Conservative treatments, primarily aimed at pain relief, fail to halt disease progression. Metabolic syndrome has recently been implicated in OA pathogenesis, underscoring the need for novel therapeutic strategies.

View Article and Find Full Text PDF

Sox17 is a key transcriptional regulator of endoderm formation and function in the gallbladder, blood vessels and reproductive organs. Although multiple transcript variants of Sox17 have been suggested, the precise mechanisms underlying their time- and tissue-specific expression remain unclear. In this study, we discovered two putative regulatory sequences (R1 and R2) adjacent to different transcription start sites of mouse Sox17 exon 1 and generated deletion mice for these regions (Sox17).

View Article and Find Full Text PDF

A core framework of the gene regulatory network (GRN) governing neural crest (NC) cell development has been generated by integrating separate inputs from diverse model organisms rather than direct comparison. This has limited insights into the diversity of genes in the NC cell GRN and extent of conservation of newly identified transcriptional signatures in cell differentiation and invasion. Here, we address this by leveraging the strengths and accessibility of the avian embryo to precise developmental staging by egg incubation and use an integrated analysis of chick (HH13) and mouse (E9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!