The structural composition and functional group changes in fulvic acid (FA) at various landfills were studied using ultraviolet and infrared spectroscopy. The electron transfer ability of FA and its ability to degrade pentachlorophenol (PCP) were also studied considering the various landfills. The results showed that the use of MR-1 as an electron donor and the simultaneous addition of fulvic acid in different stages as an electron shuttle can significantly increase the degradation rate of PCP, leading it beyond 80%. Due to the different redox properties of fulvic acid at the different landfill stages, the degradation of PCP has different reduction conversion abilities. Landfill fulvic acid is able to reduce and transform PCP because of its electron transfer ability. These functions are all conducive to promoting PCP reductive dechlorination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201804020 | DOI Listing |
Huan Jing Ke Xue
January 2025
School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
To explore the source information and composition characteristics of dissolved organic matter (DOM) in different regions of water bodies in northern cities, considering the urban water system of Shijiazhuang, Hebei Province as an example, ultraviolet-visible spectroscopy (UV-vis) and three-dimensional fluorescence parallel factor analysis (EEM-PARAFAC) were used to explain the optical parameters, abundance, and proportion of different components of DOM in water bodies of different regions. The results showed that: ① The concentrations of NO-N, NO-N, NH-N, TN, TP, and COD in the upstream were significantly lower than those in urban water bodies and downstream (<0.01), and TSI increased after the water entered the city.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher pH, their anionic forms are adsorbed mainly via bridges created by Al species. The number of active sorption sites associated with Al species complexed with fulvic acids is pH-dependent, whereas the number of corresponding sites in humic acids is pH-independent.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt.
Pea is a commercially significant legume that is widely utilized worldwide and has a elevated amount of nutrition and bioactive components. Its consumption is attributed to a number of health benefits and its potential as a functional food. Fulvic acid can be used as a bio-stimulant to promote plant growth and increase nutrient availability and uptake.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea. Electronic address:
Type 2 diabetes increases the risk of developing obesity. Although fulvic acid alleviates back fat thickness in pigs, the mechanism underlying its anti-obesity effect remains unclear. Therefore, we investigated the anti-obesity mechanism of fulvic acid using 3T3-L1 adipocytes.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing, 526200, Guangdong, China. Electronic address:
The development of materials for the remediation of the environment from solid waste represents an effective utilization strategy. This study presents a novel phosphorus-based slow-release soil agent (SLPs) developed through acid activation of phosphorus tailings. SLPs aim to improve soil properties by gradually releasing phosphorus (P), reducing Pb mobility, and preventing heavy metal contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!