[Relationship Between the Bacterial Abundance and Production with Environmental Factors in a Subtropical Karst Reservoir].

Huan Jing Ke Xue

Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China.

Published: December 2018

In recent years, the increasing scarcity of water resources and eutrophication of water have become more serious. Reservoirs that are far from big cities have become important sources of drinking water and were targets of research and protection. Therefore, the abundance and production of bacteria and their correlations with environmental factors were investigated in the Dalongdong Reservoir, Shanglin County, Guangxi Province, using Quantitative Real-time PCR technology and the C tracer technique. The Dalongdong Reservoir is a typical subtropical karst reservoir. The bacterial abundance of the surface water decreased from the upstream to the downstream along the water flow direction and then increases. The vertical distribution of the bacterial abundance at each sampling site shows a similar trend; it is the highest in the surface water and the lowest on the bottom. The correlation analysis results show that the temperature, pH, electrical conductivity, dissolved organic carbon (DOC), chlorophyll-, dissolved oxygen (DO), and other environmental factors significantly correlate with the bacterial abundance, indicating that these parameters are the main factors limiting the bacterial abundance in this region. The bacterial production is positively correlated with the pH, DOC, and permanganate index; negatively correlated with the conductivity and DIC; and significantly positively correlated with DO. The principal component analyses (PCA) shows that the environmental factors affecting the bacterial abundance and bacterial production can be grouped into two PCAs. PCA1 includes the temperature, pH, electrical conductivity, DIC, DO, chlorophyll-, DOC, and permanganate index and PCA2 includes TN and TP. The bacterial abundance and production in the Dalongdong Reservoir are affected by various environmental factors and photosynthetic bacteria are the important contributors to the production of organic carbon.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201804227DOI Listing

Publication Analysis

Top Keywords

bacterial abundance
28
environmental factors
20
abundance production
12
dalongdong reservoir
12
abundance
8
subtropical karst
8
bacterial
8
surface water
8
temperature electrical
8
electrical conductivity
8

Similar Publications

Background: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.

View Article and Find Full Text PDF

Background: The observed growth variability of different aquaculture species in captivity hinders its large-scale production. For the sandfish Holothuria scabra, a tropical sea cucumber species, there is a scarcity of information on its intestinal microbiota in relation to host growth, which could provide insights into the processes that affect growth and identify microorganisms with probiotic or biochemical potential that could improve current production strategies. To address this gap, this study used 16 S rRNA amplicon sequencing to characterize differences in gut and fecal microbiota among large and small juveniles reared in floating ocean nurseries.

View Article and Find Full Text PDF

Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea.

Environ Res

January 2025

Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China. Electronic address:

Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.

View Article and Find Full Text PDF

Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!