The hydrology of rivers recharged with reclaimed water is an important factor controlling its aquatic environment and biochemical processes, which change during the wet season. To understand the impacts of precipitation on hydrological conditions, water samples were collected from seven sites in three periods (before the wet season and during and after the maximum precipitation in July 2017, with 3.3 return periods) throughout a reclaimed water intake area of the Chaobai River in the Shunyi District, Beijing. The hydrogen-oxygen isotope characteristics and chloride content were measured. The results show that the hydrogen and oxygen isotopes of precipitation are mainly affected by the amount of the effect. The minor variation in the later period is due to changes in the sources of moisture. Within three days after precipitation, the slope runoff continues and the fraction of each section varies greatly. The reclaimed water reaches the downstream section through the preferred pathway. The water component ratio of the slope runoff increases from 2% to 85.6% in the direction of the flow, while the reclaimed water ratio decreases from 90% to 67%. The stream remains effluent from sections SY01 to SY05 that are recharged by the slope runoff, reclaimed water, and in-site river water, while the sections SY06 to SY07 are mainly recharged by the slope runoff and in-site river water within three days after the precipitation (the stream effluent is unremarkable).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201804037 | DOI Listing |
Environ Res
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China. Electronic address:
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.
Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:
Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Sapienza University of Rome, Department of Civil, Building and Environmental Engineering, Rome, Italy.
Reuse of reclaimed wastewater (RWW) in agriculture represents one of the key strategies to promote for reducing the pressures on water sources, as also fostered by the EU governance. Indeed, the European Regulation 741/2020 on water reuse, entered into force in 2023, was issued with the aim to extend the reuse of treated water in agriculture under safe conditions. It establishes the minimum quality requirements; it also foresees the possibility to add additional requirements, especially for contaminants of emerging concern (CECs), based on "scientific evidence" and the risk assessment.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Business and Economics, Australia National University, Canberra, Australia. Electronic address:
Improving water reuse efficiency from a recycling perspective is claimed to be a better way to alleviate global water scarcity and water pollution. This study opens the internal "black box" of China's water reuse system driven and decomposes water reuse system into water use, wastewater treatment and reclaimed water reuse stages, and selects input-output indicators based on SDG6. Then, it proposes a dynamic three-stage DEA model to assess the water reuse efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!