Sediment and overlying water samples were collected seasonally from five different geomorphic structures (i.e., pools, riffles, gravel bars, point bars, and runs) from two urban reaches of the Shiwulihe River in the Chaohu Lake Basin dominated by high ammonia concentration between July 2017 and March 2018. Both the sediment potential and areal nitrification rates were measured and their seasonal and geomorphological variability were evaluated. The specific differences between every two geomorphic structures were determined using the Mann-Whitney test and the relationship between the overlying water environment or benthic sediments and sediment nitrification was explored based on regression analysis. The results show that:① The studied reaches are seriously polluted by nitrogen and phosphorus and most of the oxidation-reduction potential (ORP) values in the overlying water were are below 0 mV, suggesting strong reducing conditions of the water column. ② The potential nitrification rates (PNRs) across the five geomorphic structures range from 0.002 to 0.079 μmol·(g·h), with a mean value of 0.023 μmol·(g·h). The ranking order of PNRs is pools > point bars > riffles > gravel bars > runs, with a seasonal change pattern of summer > spring > autumn > winter. ③ The areal nitrification rates (ANRs) across the five geomorphic structures range between 0.140 and 13.543 μmol·(m·h), with an average of 3.658 μmol·(m·h). In general, the highest mean value was observed in riffles, followed by runs, and gravel bars and point bars; the smallest value was observed in pools. In addition, ANRs appear to have seasonal change patterns similar to that of the PNRs. ④ According to the difference analysis, there are significant differences between pools or riffles and other features of the PNRs. Extremely significant ANR differences were observed between more than half of the geomorphic structures. ⑤ Regression analysis shows a stronger correlation between sediment nitrification and the overlying water environment, compared with the surface sediment properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201806001 | DOI Listing |
Sci Total Environ
January 2025
Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Ecoscience, Freshwater Ecology, University of Aarhus, Aarhus, Denmark. Electronic address:
Huan Jing Ke Xue
December 2024
College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China.
Environ Monit Assess
October 2024
Uttarakhand State Disaster Management Authority, Dehradun, Government of Uttarakhand, India.
Geomorphometric analysis using geomorphic indices is essential to comprehend the evolution of a river basin including denudation, surface runoff, subsurface infiltration, differential erosion, lithological variations, possible surface tilting, landslides, and the influence of geological formations and structure. Research in morphometric measurements continues to face many challenges and difficulties despite all the effort carried out. These include the inaccuracy of morphometric measurements and the time it takes to obtain the expected results in large basins.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Geology & Sustainable Mining Institute (GSMI), University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
Proper management of mine waste plays a crucial role in minimizing environmental impacts. One potential solution to tackle this problem involves transforming mine waste rock into soil to facilitate the process of mine restoration. The aim of this study was to assess the mineralogical, chemical, and physical characteristics of technosol derived from phosphate mine waste dumps.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
The periodontal tissue comprises alveolar bone, cementum, and periodontal ligament (PDL), forming a highly hierarchical architecture. Although current therapies could regenerate the hard tissue well, the simultaneous reconstruction of hard and soft tissue remains a great clinical challenge with the major difficulty in highly orientated PDL regeneration. Using the unidirectional freeze-casting method and biomimetic mineralization technique, we construct a hierarchical bilayer scaffold with the aligned chitosan scaffold with ZIF-8 resembling PDL, and intrafibrillarly mineralized collagen resembling alveolar bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!