In order to evaluate the effect of different treatments on yield and greenhouse gas emissions during the summer maize growing season, a two-year film mulching experiment was conducted in 2014 and 2015. In this experiment, the two main experimental factors were rainfed treatment (R) and irrigated treatment (I), and the secondary experimental factors included control treatment (CK), half film mulching treatment (HM), and full film mulching treatment (FM). The emissions of soil greenhouse gases (CO, CH, and NO) were monitored using a static opaque chamber and chromatography method. Moreover, the greenhouse gas emissions intensity (GHGI) was used to evaluate the effect of carbon sequestration in different treatments. The results of this study showed that the yields of the RHM and RFM treatments did not differ significantly in 2014, but increased by 19.6% and 26.8%, respectively, in 2015 compared with that of RCK. The yield of IHM was not improved, and that of IFM significantly increased by 14.1% and 55.8% in 2014 and 2015, respectively, compared with that of ICK. The irrigated treatments only promoted CO emissions in 2015 (<0.01), and all film mulching treatments (regardless of HM and FM treatments) had no effect on CO emissions under rainfed and irrigated conditions (>0.05). Irrigated treatments had no effect on the absorption of CH (>0.05), whereas the film mulching treatments had an inhibitory effect. Compared with values of RCK, the amount of seasonal NO emissions for ICK showed a significant difference in 2015 with a decrease of 22.3%. Compared with values of RCK, the amounts of NO emissions for RHM and RFM had no significant differences in 2014, but significantly decreased by 50.7% and 51.4% in 2015, respectively. Compared with ICK, IHM and IFM significantly decreased the amounts of NO emissions by 47.5% and 54.2% in 2014, and by 9.6% and 52.2% in 2015, respectively. The GHGIs of RHM and RFM were significantly reduced by 60.1% and 61.7% in 2015, respectively, compared with values of RCK, and the GHGIs of IHM and IFM were significantly reduced by 39.7% and 53.2% in 2014, and reduced by 22.2% and 67.5% in 2015, respectively, compared with that of ICK. This means that the effect of FM on reducing GHGI was better than that of HM. It was also found that the significantly reduced GHGI in irrigated treatments may be attributed to the increased yields. Therefore, FM under irrigation conditions was recommended for summer maize for stabilizing the yield and reducing the GHGI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201804056 | DOI Listing |
Sci Total Environ
January 2025
Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China. Electronic address:
Microplastic pollution in agricultural soils poses a significant threat to soil quality and environmental sustainability. This study investigated the composition, abundance, distribution, ecological risk, and environmental carrying capacity of microplastic pollution in the Tarim River Basin (TRB), China. The risk quotient combined with soil environmental carrying capacity (SECC) approaches was proposed to evaluate ecological risks and soil sustainability.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China. Electronic address:
Plastic mulching film is ubiquitous in modern agriculture for its heat preservation and moisture retention functions. However, plastic mulching film waste accumulated on land results in microplastic pollution, posing potential hazards as these micro and nanoplastics can enter the food chain. Chemical upcycling of waste mulching film is an emerging strategy to realize sustainable development and circular economy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmacy, Fujian Vocational College of Bioengineering, Fuzhou 350000, China. Electronic address:
Carrageenan has good film-forming characteristics, but it is difficult to simultaneously improve its multiple performances, such as water-resistance, light transmittance and thermal stability. In this study, multi-advantage composite films were prepared by iota-carrageenan and quaternary ammonium surfactants according to solvent induced method. The weight change, FTIR and thermogravimetric analyses of the films before and after solvent inducement indicated that the inorganic counterions of iota-carrageenan were replaced by quaternary ammonium ions.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
Replacing traditional plastic mulch with fully biodegradable mulch is an important research direction to solve the problem of "white pollution," but whether it can truly realize biodegradation is still the focus of many scholars. In this study, field and indoor experiments were carried out in Pingluo County, Ningxia Hui Autonomous Region, using poly(butyleneadipate-co-terephthalate) (PBAT) fully biodegradable mulch film and ordinary polyethylene (PE) mulch film, with no mulch film (CK) as the control. Macroscopic characteristics such as the degree of apparent cracking of the mulch film, loss of the mulch film area, and the rate of weight loss were observed, and the results were combined with the results of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry (TGR).
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China. Electronic address:
Plastic films mulching, a management strategy designed to boost agricultural productivity, significantly impacts soil fertility and the turnover of soil organic carbon (SOC). Aggregates in the soil play a crucial role in this SOC cycling. Yet, the effect of mulching on the changes in organic carbon components and the mineralization at the aggregate scale is still not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!