A micro-orifice uniform deposit impactor (MOUDI-122) was used to collect ambient aerosol at an urban site in Beijing in both winter and summer from 2016 to 2017. The water-soluble components, including ions and water-soluble organic carbon (WSOC) were analyzed. The characteristics of concentrations and size distributions for water-soluble components under different seasons and pollution conditions were determined. The results showed that NH, NO, SO, and K in both seasons and Cl in winter mainly distributed in the accumulation mode, and Mg and Ca primarily distributed in the coarse mode. The secondary ions were still the main components of PM in Beijing. The concentrations of SO were higher in summer, whereas those of NO, K, and Cl were higher in winter. Mg and Ca had lower correlations with other main components of aerosols, indicating their independent sources. The average size distributions and concentration levels of NO and SO exhibited apparent differences between daytime and nighttime in summer. During polluted periods, the concentrations of secondary ions increased in both the accumulation and coarse modes but decreased in the Aitken mode. As pollution levels increased in winter, the mass median diameters of secondary ions in the droplet mode also increased. The WSOC concentration and particle size distribution under accumulation mode in summer were significantly larger than those in winter. The distribution peaks of WSOC in accumulation mode were higher in summer than those in winter. The WSOC in particles of 0.056-0.32 μm were relatively stable under different pollution levels. However, the WSOC concentration in particles larger than 0.32 μm during polluted periods was evidently higher than that during clean periods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201802146 | DOI Listing |
Chem Soc Rev
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47906, USA.
The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
The optimization of slurry content and forming process parameters has a significant effect in slurry microextrusion direct forming method. In this article, magnesium sulfate monohydrate (MgSO) and polyvinylpyrrolidone (PVP) were used as raw materials to prepare the slurry, and the component ratios of the slurry and the optimization of its forming process were discussed. The optimum slurry content is 64 wt.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
The oxidative potential (OP) of particulate matter (PM) is crucial for understanding its ability to generate reactive oxygen species. However, the major chemical drivers influencing OP still need to be better understood. This study investigated the seasonal variations of OP and identified key drivers and source mechanisms in the industrial city of Zibo, located in North China Plain.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Earth Sciences and Engineering, Hebei University of Engineering, Handan 056038, China.
In 2018, the State Council issued the Three-year Action Plan for Winning the Blue Sky Defense War (Blue Sky Defense War). To study the characteristics and sources of PM pollution in the early stage (first stage), middle stage (second stage), and late stage (third stage) of the Blue Sky Defense War in Handan City in autumn and winter, PM samples were collected in the autumn and winter from 2016 to 2021. Based on the concentration data of eight water-soluble ions, EC, and OC the source analysis was performed using the positive definite matrix factorization model, backward trajectory, and potential source contribution factor (PSCF) analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!