A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amplification-free and direct fluorometric determination of telomerase activity in cell lysates using chimeric DNA-templated silver nanoclusters. | LitMetric

AI Article Synopsis

  • A new fluorogenic probe using chimeric DNA-templated silver nanoclusters has been created to measure telomerase activity in cancer cells.
  • This method achieves selective quenching of silver nanocluster emissions, indicating telomerase presence through G-quadruplex formation in elongated DNA products.
  • It offers improved sensitivity, faster results, and lower costs compared to the traditional telomeric repeat amplification protocol (TRAP) assay, making it a more efficient tool for cancer research.

Article Abstract

A fluorogenic probe has been developed for determination of telomerase activity using chimeric DNA-templated silver nanoclusters (AgNCs). The formation of AgNCs was investigated before (route A) and after (route B) telomerase elongation reaction. Both routes caused selective quenching of the yellow emission of the AgNCs (best measured at excitation/emission wavelength of 470/557 nm) in telomerase-positive samples. The quenching mechanism was studied using synthetically elongated DNA to mimic the telomerase-catalyzed elongation. The findings show that quenching is due to the formation of parallel G-quadruplexes with a -TTA- loop in the telomerase elongated products. The assay was validated using different cancer cell extracts, with intra- and interassay coefficients of variations of <9.8%. The limits of detection for MCF7, RPMI 2650 and HT29 cell lines are 15, 22 and 39 cells/μL. This represents a distinct improvement over the existing telomeric repeat amplification protocol (TRAP) assay in terms of time, sensitivity and cost. Graphical Abstract A method was developed using chimeric DNA-templated silver nanoclusters to detect telomerase activity directly in cell extracts. The sensitivity of this new method outperforms the traditional TRAP assay, and without the need for amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-3194-7DOI Listing

Publication Analysis

Top Keywords

determination telomerase
8
telomerase activity
8
chimeric dna-templated
8
dna-templated silver
8
silver nanoclusters
8
amplification-free direct
4
direct fluorometric
4
fluorometric determination
4
telomerase
4
activity cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!