Among the multiple causes of weaning failure from mechanical ventilation, cardiovascular dysfunction is increasingly recognized as a quite frequent cause that can be treated successfully. In this review, we summarize the contemporary evidence of the most important clinical and diagnostic aspects of weaning failure of cardiovascular origin with special focus on treatment. Pathophysiological mechanisms are complex and mainly include increase in right and left ventricular preload and afterload and potentially induce myocardial ischemia. Patients at risk include those with preexisting cardiopulmonary disease either known or suspected. Clinically, cardiovascular etiology as a predominant cause or a contributor to weaning failure, though critical for early diagnosis and intervention, may be difficult to be recognized and distinguished from noncardiac causes suggesting the need of high suspicion. A cardiovascular diagnostic workup including bedside echocardiography, lung ultrasound, electrocardiogram and biomarkers of cardiovascular dysfunction or other adjunct techniques and, in selected cases, right heart catheterization and/or coronary angiography, should be obtained to confirm the diagnosis. Official clinical practice guidelines that address treatment of a confirmed weaning-induced cardiovascular dysfunction do not exist. As the etiologies of weaning-induced cardiovascular dysfunction are diverse, principles of management depend on the individual pathophysiological mechanisms, including preload optimization by fluid removal, guided by B-type natriuretic peptide measurement, nitrates administration in excessive afterload and/or myocardial ischemia, contractility improvement in severe systolic dysfunction as well as other rational treatment in specific indications in order to lead to successful weaning from mechanical ventilation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326918 | PMC |
http://dx.doi.org/10.1186/s13613-019-0481-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!