A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies.

Comput Intell Neurosci

Universidad Panamericana, Facultad de Ingeniería, Augusto Rodin 498, Ciudad de México 03920, Mexico.

Published: April 2019

Robots in assisted living (RAL) are an alternative to support families and professional caregivers with a wide range of possibilities to take care of elderly people. Navigation of mobile robots is a challenging problem due to the uncertainty and dynamics of environments found in the context of places for elderly. To accomplish this goal, the navigation system tries to replicate such a complicated process inspired on the perception and judgment of human beings. In this work, we propose a novel nature-inspired control system for mobile RAL navigation using an artificial organic controller enhanced with vision-based strategies such as Hermite optical flow (OF) and convolutional neural networks (CNNs). Particularly, the Hermite OF is employed for obstacle motion detection while CNNs are occupied for obstacle distance estimation. We train the CNN using OF visual features guided by ultrasonic sensor-based measures in a 3D scenario. Our application is oriented to avoid mobile and fixed obstacles using a monocular camera in a simulated environment. For the experiments, we use the robot simulator V-REP, which is an integrated development environment into a distributed control architecture. Security and smoothness metrics as well as quantitative evaluation are computed and analyzed. Results showed that the proposed method works successfully in simulation conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305060PMC
http://dx.doi.org/10.1155/2018/4189150DOI Listing

Publication Analysis

Top Keywords

artificial organic
8
control system
8
system mobile
8
assisted living
8
novel artificial
4
organic control
4
mobile
4
mobile robot
4
navigation
4
robot navigation
4

Similar Publications

Integrating Humidity-Resistant and Colorimetric COF-on-MOF Sensors with Artificial Intelligence Assisted Data Analysis for Visualization of Volatile Organic Compounds Sensing.

Adv Sci (Weinh)

January 2025

National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, P. R. China.

Direct visualization and monitoring of volatile organic compounds (VOCs) sensing processes via portable colorimetric sensors are highly desired but challenging targets. The key challenge resides in the development of efficient sensing systems with high sensitivity, selectivity, humidity resistance, and profuse color change. Herein, a strategy is reported for the direct visualization of VOCs sensing by mimicking human olfactory function and integrating colorimetric COF-on-MOF sensors with artificial intelligence (AI)-assisted data analysis techniques.

View Article and Find Full Text PDF

Self-Adaptive Polarized Photoresponse in Organic Single-Crystal Phototransistors for Bionic Night-Time Polarization Perception.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.

The emerging semiconductor micro/nanocrystals with intrinsic anisotropy have provided new perspectives for low-cost and simplified polarimetry. However, the low polarization sensitivity of state-of-the-art polarimeters based on anisotropic semiconductors under weak and partially polarized light severely hinders their practical application in complex dim environments. Here, a photo-adaptive polarization-sensitive organic phototransistor (POL-OPT) is demonstrated for bionic weak-light polarization perception.

View Article and Find Full Text PDF

The Lieb lattice is one of the simplest lattices that exhibits both linear Dirac-like and flat topological electronic bands. We propose to further tailor its electronic properties through periodic 1D electrostatic superlattices (SLs), which, in the long wavelength limit, were predicted to give rise to novel transport signatures, such as the omnidirectional super-Klein tunnelling (SKT). By numerically modelling the electronic structure at tight-binding level, we uncover the evolution of the Lieb SL band structure from the discrete all the way to the continuum regime and build a comprehensive picture of the Lieb lattice under 1D potentials.

View Article and Find Full Text PDF

The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template.

View Article and Find Full Text PDF

Constructing Two-Dimensional, Ordered Networks of Carbon-Carbon Bonds with Precision.

Precis Chem

January 2025

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.

Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!