Cell membrane-derived microparticles (MPs), the critical mediators of intercellular communication, have gained much interest for use as natural drug delivery systems. Here, we examined the therapeutic potential of tumor cell-derived MPs (TMPs) in the context of malignant pleural effusion (MPE). TMPs packaging the chemotherapeutic drug methotrexate (TMPs-MTX) markedly restricted MPE growth and provided a survival benefit in MPE models induced by murine Lewis lung carcinoma and colon adenocarcinoma cells. On the basis of the potential benefit and minimal toxicity of TMPs-MTX, we conducted a human study of intrapleural delivery of a single dose of autologous TMPs packaging methotrexate (ATMPs-MTX) to assess their safety, immunogenicity, and clinical activity. We report our findings on 11 advanced lung cancer patients with MPE. We found that manufacturing and infusing ATMPs-MTX were feasible and safe, without evidence of toxic effects of grade 3 or higher. Evaluation of the tumor microenvironment in MPE demonstrated notable reductions in tumor cells and CD163 macrophages in MPE after ATMP-MTX infusion, which then translated into objective clinical responses. Moreover, ATMP-MTX treatment stimulated CD4 T cells to release IL-2 and CD8 cells to release IFN-γ. Our initial experience with ATMPs-MTX in advanced lung cancer with MPE suggests that ATMPs targeting malignant cells and the immunosuppressive microenvironment may be a promising therapeutic platform for treating malignancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.aat5690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!