Protection from influenza virus infection is canonically associated with antibodies that neutralize the virus by blocking the interaction between the viral hemagglutinin and host cell receptors. However, protection can also be conferred by other mechanisms, including antibody-mediated effector functions. Here, we report the characterization of 22 broadly cross-reactive, nonneutralizing antibodies specific for influenza B virus hemagglutinin. The majority of these antibodies recognized influenza B viruses isolated over the period of 73 years and bind the conserved stalk domain of the hemagglutinin. A proportion of the characterized antibodies protected mice from both morbidity and mortality after challenge with a lethal dose of influenza B virus. Activity in an antibody-dependent cell-mediated cytotoxicity reporter assay correlated strongly with protection, suggesting that Fc-dependent effector function determines protective efficacy. The information regarding mechanism of action and epitope location stemming from our characterization of these antibodies will inform the design of urgently needed vaccines that could induce broad protection against influenza B viruses. While broadly protective antibodies against the influenza A virus hemagglutinin have been well studied, very limited information is available for antibodies that broadly recognize influenza B viruses. Similarly, the development of a universal or broadly protective influenza B virus vaccine lags behind the development of such a vaccine for influenza A virus. More information about epitope location and mechanism of action of broadly protective influenza B virus antibodies is required to inform vaccine development. In addition, protective antibodies could be a useful tool to treat or prevent influenza B virus infection in pediatric cohorts or in a therapeutic setting in immunocompromised individuals in conjugation with existing treatment avenues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401450PMC
http://dx.doi.org/10.1128/JVI.01696-18DOI Listing

Publication Analysis

Top Keywords

influenza virus
36
influenza
12
virus hemagglutinin
12
influenza viruses
12
broadly protective
12
antibodies
10
virus
10
broadly cross-reactive
8
cross-reactive nonneutralizing
8
nonneutralizing antibodies
8

Similar Publications

To evaluate the performance of three rapid influenza diagnostic tests (RIDTs) for detecting influenza A and B viruses compared to RT-PCR. A total of 291 subjects with acute respiratory infections were enrolled. Respiratory specimens were collected and tested for influenza A and B viruses using three RIDTs.

View Article and Find Full Text PDF

Subacute thyroiditis - Is it really linked to viral infection? Retrospective hospital patient registry study.

J Clin Endocrinol Metab

January 2025

Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Objective: Subacute thyroiditis (SAT) is a painful inflammatory disorder of the thyroid gland, which - after a phase of thyrotoxicosis - leads to transient, or less frequently permanent hypothyroidism. Apart from a strong association with specific HLA alleles, the causes are uncertain. Viral disease has been hypothesised as a trigger, with Enteroviruses, namely Echoviruses and Coxsackieviruses, showing a seasonal distribution that coincides with the incidence of SAT.

View Article and Find Full Text PDF

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Mining Druggable Sites in Influenza A Hemagglutinin: Binding of the Pinanamine-Based Inhibitor M090.

ACS Med Chem Lett

January 2025

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació - Campus Torribera, Universitat de Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Assessing the binding mode of drug-like compounds is key in structure-based drug design. However, this may be challenged by factors such as the structural flexibility of the target protein. In this case, state-of-the-art computational methods can be valuable to explore the linkages between structural and pharmacological data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!