A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methods of sample size calculation in descriptive retrospective burden of illness studies. | LitMetric

Methods of sample size calculation in descriptive retrospective burden of illness studies.

BMC Med Res Methodol

Broadstreet Health Economics and Outcomes Research, 343 Railway St Vancouver BC, Vancouver, V6A 1A4, Canada.

Published: January 2019

AI Article Synopsis

  • This study focuses on developing methods for determining the ideal sample size needed in observational burden of illness studies, which are important in understanding treatment patterns and medical costs.
  • It highlights that a sample size of around 200 is often sufficient to ensure meaningful results, particularly for treatments that occur with at least 1% frequency in the population.
  • The findings aim to provide a structured approach to sample size calculation, facilitating more effective study designs in pharmacoepidemiology.

Article Abstract

Background: Observational burden of illness studies are used in pharmacoepidemiology to address a variety of objectives, including contextualizing the current treatment setting, identifying important treatment gaps, and providing estimates to parameterize economic models. Methodologies such as retrospective chart review may be utilized in settings for which existing datasets are not available or do not include sufficient clinical detail. While specifying the number of charts to be extracted and/or determining whether the number that can feasibly extracted will be clinically meaningful is an important study design consideration, there is a lack of rigorous methods available for sample size calculation in this setting. The objective of this study was to develop recommended sample size calculations for use in such studies.

Methods: Calculations for identifying the optimal feasible sample size calculations were derived, for studies characterizing treatment patterns and medical costs, based on the ability to comprehensively observe treatments and maximize precision of resulting 95% confidence intervals. For cost outcomes, if the standard deviation is not known, the coefficient of variation cv can be used as an alternative. A case study of a chart review of advanced melanoma (MELODY) was used to characterize plausible values for cv in a real-world example.

Results: Across sample sizes, any treatment given with greater than 1% frequency has a high likelihood of being observed. For a sample of size 200, and a treatment given to 5% of the population, the precision of a 95% confidence interval (CI) is expected to be ±0.03. For cost outcomes, for the median cv value observed in the MELODY study (0.72), a sample size of approximately 200 would be required to generate a 95% CI precise to within ±10% of the mean.

Conclusion: This study presents a formal guidance on sample size calculations for retrospective burden of illness studies. The approach presented here is methodologically rigorous and designed for practical application in real-world retrospective chart review studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325730PMC
http://dx.doi.org/10.1186/s12874-018-0657-9DOI Listing

Publication Analysis

Top Keywords

sample size
28
burden illness
12
illness studies
12
chart review
12
size calculations
12
methods sample
8
size calculation
8
retrospective burden
8
retrospective chart
8
precision 95%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!