Glioblastoma multiforme (GBM) is a type of brain tumor that is notorious for its aggressiveness and invasiveness, and the complete removal of GBM is still not possible, even with advanced diagnostic strategies and extensive therapeutic plans. Its dismal prognosis and short survival time after diagnosis make it a crucial public health issue. Understanding the molecular mechanisms underlying GBM may inspire novel and effective treatments against this type of cancer. At a molecular level, almost all tumor cells exhibit telomerase activity (TA), which is a major means by which they achieve immortalization. Further studies show that promoter mutations are associated with increased TA and stable telomere length. Moreover, some tumors and immortalized cells maintain their telomeres with a telomerase-independent mechanism termed the "alternative lengthening of telomeres" (ALT), which relates to the mutations of the α-thalassemia/mental retardation syndrome X-linked protein (ATRX), the death-domain associated protein (DAXX) and H3.3. By means of the mutations of the telomerase reverse transcriptase (TERT) promoter and ATRX/DAXX, cancers can immortalize and escape cell senescence and apoptosis. In this article, we review the evidence for triggering GBM cell death by targeting telomerase and the ALT pathway, with an extra focus on a plant-derived compound, butylidene phthalide (BP), which may be a promising novel anticancer compound with good potential for clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337644PMC
http://dx.doi.org/10.3390/ijms20010200DOI Listing

Publication Analysis

Top Keywords

targeting telomerase
8
senescence apoptosis
8
telomerase atrx/daxx
4
atrx/daxx inducing
4
inducing tumor
4
tumor senescence
4
apoptosis malignant
4
malignant glioma
4
glioma glioblastoma
4
glioblastoma multiforme
4

Similar Publications

Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.

View Article and Find Full Text PDF

Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups.

View Article and Find Full Text PDF

IGF2BPs-regulated TIN2 confers the malignant biological behaviors of gastric cancer cells.

Tissue Cell

December 2024

Department of Pathology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, PR China. Electronic address:

Background: Telomere maintenance is an important feature of tumor cells. Telomeric-repeat binding factor 1 interaction nuclear protein 2 (TIN2), a key member of the shelterin proteins, functions in regulating telomere structure, length and function. Our work sought to investigate the role of TIN2 in controlling gastric cancer (GC) malignant biological behaviors.

View Article and Find Full Text PDF

Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.

View Article and Find Full Text PDF

Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!