In this work, we report a simple strategy to improve the detection sensitivity as well as the spectral quality of probe molecules on surface-enhanced Raman scattering (SERS) substrates. On normal SERS substrates, due to the decreased absorption capacity and changes in the molecule orientations, SERS signals disappear when the analyte molecule concentrations reach a limit value. To solve this problem, the molecular template reagent (MTR) technique, a simple strategy based on SERS surface selection rules, is considered. By choosing the best MTR according to different samples, the effect of adjusting the molecular orientations of samples can be studied. In this process, 1-butanethiol, 1-hexanethiol, 1-octanethiol, 1-decanethiol, and 1-dodecanethiol, which are MTRs, are used to adjust the orientations of probe molecules under optimized conditions. The use of the MTR technique indicated that the limit of detection (LOD) of the probe molecules of p-aminobenzenethiol and 4-mercaptobenzoic acid on noble metal substrates showed an increase of one order of magnitude over the LOD of the pure probing molecule systems. Hence, the proposed method introduces a way to detect the molecules with an improved sensitivity at extremely low concentrations. The study corresponds to a proof-of-concept study of MTR-assisted SERS for SERS-based applications in ultrasensitive analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2018.11.040 | DOI Listing |
Acc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Physics, Northeast Forestry University, Harbin 150040, China.
In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFFoods
December 2024
Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of in vineyards the main strategy used to reduce OTA contamination risk.
View Article and Find Full Text PDFMolecules
January 2025
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!